980 resultados para Cellular systems
Resumo:
En este proyecto se estudiarán las interferencias en el canal adyacente de los sistemas celulares, ubicados en las bandas de 900 y 1800 MHz. Para esto, se analizarán medidas de interferencia entre LTE y otros sistemas de comunicación celular. En el primer capítulo, se dará una breve descripción de los principales parámetros empleados en los distintos estándares de comunicaciones móviles, que operan en las bandas de frecuencia de interés. En el segundo, se van a explicar los distintos tipos de interferencias existentes entre sistemas celulares. También se verán las diferentes técnicas para reducir dichas interferencias, como por ejemplo, la de control de potencia y la de coordinación de interferencia entre celdas. Además, se explicarán los parámetros para determinar la interferencia en el canal adyacente, como son el ACLR, ACS y ACIR. Para finalizar se resumirán las principales características de los sistemas LTE y WiMAX. En el tercer capítulo, se estudiarán las interferencias que genera principalmente LTE a los otros sistemas celulares, mediante los parámetros que miden la interferencia en el canal adyacente explicados en el capítulo dos. Además, se determinará la separación en frecuencia que debe existir entre los canales para que los sistemas puedan coexistir. El capítulo cuatro se basa en la simulación de tres escenarios de interferencia entre dichos sistemas. Para esto, se utilizará el software de simulación de propagación radio, denominado Radio Plan. Con estas simulaciones se cuantificarán las pérdidas de rendimiento que sufren los sistemas interferidos. Por último, en el capítulo cinco se resumirán las conclusiones a las que se llegaron después de simular los diferentes escenarios de interferencia. SUMMARY In this project an adjacent channel interference study for cellular systems, allocated within 900 MHz and 1800 MHz bands will be performed. For this aim a set of measurements will be analyzed. In the first chapter, a brief explanation of the main parameters used in different mobile communications standards that operate in the frequency bands of interest, will be given. In the second chapter, different types of interference between cellular systems will be explained, as well as different techniques to reduce such interference. For example, power control and interference coordination between cells, will be shown. Furthermore, the parameters to determine the adjacent-channel interference, such as the ACLR, ACS and ACIR will be overviewed. Finally, the main features of LTE and WiMAX systems will be summarized. In the third chapter, the interference generated by the other mainly LTE cellular systems via parameters that measure the adjacent channel interference explained in chapter two will be studied. Also, the frequency separation that must exist between the channels so that the systems can coexist will be determined. The fourth chapter is based on the simulation of three scenarios of interference between these systems. For this purpose, a radio propagation simulation software package Radio Plan will be used. These simulations will quantify performance losses suffered by systems that interfered. Finally, in chapter five the conclusions about the results of simulations of interference in different scenarios will be presented.
Resumo:
La generalización del uso de dispositivos móviles, con su consiguiente aumento del tráfico de datos, está generando una demanda cada vez mayor de bandas de frecuencia para el despliegue de sistemas de comunicación inalámbrica, así como una creciente congestión en las bandas bajas del espectro (hasta 3 GHz). Entre las posibles soluciones a este problema, se ha propuesto que la próxima generación de sistemas celulares, 5G, hagan uso de la banda milimétrica, entre 30 GHz y 300 GHz, donde hay anchos de banda contiguos disponibles con tamaños muy difíciles de encontrar en las frecuencias en uso en la generación actual. Este Proyecto de Fin de Grado tiene como finalidad estudiar la viabilidad del despliegue de sistemas celulares en dicha banda, basándose en los estudios tanto empíricos como teóricos ya publicados, así como en las recomendaciones de la UIT donde se estudian las características de propagación en estas bandas. En un siguiente apartado, se han analizado los documentos disponibles de los distintos proyectos y grupos, como pueden ser METIS-2020, impulsado por la Comisión Europea o IMT-2020 promovido por la UIT, dedicados a definir los futuros estándares de comunicación y sus características, así como la evolución de los actuales. Aparte del trabajo de documentación, se han realizado una serie de simulaciones. En primer lugar, se ha utilizado MATLAB para estudiar el comportamiento y la atenuación de la onda electromagnética a las frecuencias de interés en diferentes ubicaciones y climas, tanto en ubicaciones habituales como extremas, estudiándose los efectos de los gases atmosféricos y los hidrometeoros. También se ha utilizado software de planificación radioeléctrica profesional para hacer estudios de cobertura en entornos tanto urbanos, entre ellos Madrid o Barcelona, suburbanos, como Tres Cantos (Madrid) y O Barco de Valdeorras (Orense), y rurales como Valdefuentes (Cáceres) y Quiruelas de Vidriales (Zamora). Por último se han recogido todos los resultados, tanto los provenientes de los estudios como los obtenidos de nuestras propias simulaciones, y se ha realizado un breve comentario, comparando estos y analizando su impacto para posibles despliegues futuros de redes 5G. ABSTRACT. The generalization of mobile device use, with its associated data traffic growth, is generating a growing demand of spectrum for its use in the deployment of wireless telecommunication systems, and a growing congestion in the lower end of the spectrum (until 3 GHz). Among the possible solutions for this problem, it has been proposed that the next generation of cellular systems, 5G, makes use of the millimeter band, between 30 GHz and 300 GHz, where there are contiguous bandwidths with sizes hardly available in the bands used in the present. This Project aims to study the feasibility of cellular system deployments in said band, based on published empirical and theoretical studies and papers, and the ITU recommendations, where the propagation characteristics in those bands are studied. In the next section, available documentation coming from the different study groups and projects like METIS 2020 promoted by the European Commission, or IMT-2020, promoted by the ITU has been studied. In the documentation, future telecommunication standards and its characteristics and the evolution of the current ones are defined. Besides the documentation work, a series of simulations have been carried out. First, MATLAB has been used to study the behavior and attenuation of the electromagnetic wave at the frequencies of interest in different locations and climates, studying the effects of atmospheric gasses and hydrometeors in conventional and extreme locations. Industry standard radioelectric planning software has been used to study the coverage in different environments, such as urban locations like Madrid and Barcelona, both in Spain, suburban locations like Tres Cantos (Madrid, Spain) and O Barco de Valdeorras (Orense, Spain) and rural locations such as Valdefuentes (Cáreces, Spain) and Quiruelas de Vidriales (Zamora, Spain). Finally, all the results, both from the documentation and our own simulations, have been collected, and a brief commentary has been made, comparing those results and their possible impact in the future deployment of 5G networks.
Resumo:
Los resultados presentados en la memoria de esta tesis doctoral se enmarcan en la denominada computación celular con membranas una nueva rama de investigación dentro de la computación natural creada por Gh. Paun en 1998, de ahí que habitualmente reciba el nombre de sistemas P. Este nuevo modelo de cómputo distribuido está inspirado en la estructura y funcionamiento de la célula. El objetivo de esta tesis ha sido analizar el poder y la eficiencia computacional de estos sistemas de computación celular. En concreto, se han analizado dos tipos de sistemas P: por un lado los sistemas P de neuronas de impulsos, y por otro los sistemas P con proteínas en las membranas. Para el primer tipo, los resultados obtenidos demuestran que es posible que estos sistemas mantengan su universalidad aunque muchas de sus características se limiten o incluso se eliminen. Para el segundo tipo, se analiza la eficiencia computacional y se demuestra que son capaces de resolver problemas de la clase de complejidad ESPACIO-P (PSPACE) en tiempo polinómico. Análisis del poder computacional: Los sistemas P de neuronas de impulsos (en adelante SN P, acrónimo procedente del inglés «Spiking Neural P Systems») son sistemas inspirados en el funcionamiento neuronal y en la forma en la que los impulsos se propagan por las redes sinápticas. Los SN P bio-inpirados poseen un numeroso abanico de características que ha cen que dichos sistemas sean universales y por tanto equivalentes, en poder computacional, a una máquina de Turing. Estos sistemas son potentes a nivel computacional, pero tal y como se definen incorporan numerosas características, quizás demasiadas. En (Ibarra et al. 2007) se demostró que en estos sistemas sus funcionalidades podrían ser limitadas sin comprometer su universalidad. Los resultados presentados en esta memoria son continuistas con la línea de trabajo de (Ibarra et al. 2007) y aportan nuevas formas normales. Esto es, nuevas variantes simplificadas de los sistemas SN P con un conjunto mínimo de funcionalidades pero que mantienen su poder computacional universal. Análisis de la eficiencia computacional: En esta tesis se ha estudiado la eficiencia computacional de los denominados sistemas P con proteínas en las membranas. Se muestra que este modelo de cómputo es equivalente a las máquinas de acceso aleatorio paralelas (PRAM) o a las máquinas de Turing alterantes ya que se demuestra que un sistema P con proteínas, es capaz de resolver un problema ESPACIOP-Completo como el QSAT(problema de satisfacibilidad de fórmulas lógicas cuantificado) en tiempo polinómico. Esta variante de sistemas P con proteínas es muy eficiente gracias al poder de las proteínas a la hora de catalizar los procesos de comunicación intercelulares. ABSTRACT The results presented at this thesis belong to membrane computing a new research branch inside of Natural computing. This new branch was created by Gh. Paun on 1998, hence usually receives the name of P Systems. This new distributed computing model is inspired on structure and functioning of cell. The aim of this thesis is to analyze the efficiency and computational power of these computational cellular systems. Specifically there have been analyzed two different classes of P systems. On the one hand it has been analyzed the Neural Spiking P Systems, and on the other hand it has been analyzed the P systems with proteins on membranes. For the first class it is shown that it is possible to reduce or restrict the characteristics of these kind of systems without loss of computational power. For the second class it is analyzed the computational efficiency solving on polynomial time PSACE problems. Computational Power Analysis: The spiking neural P systems (SN P in short) are systems inspired by the way of neural cells operate sending spikes through the synaptic networks. The bio-inspired SN Ps possess a large range of features that make these systems to be universal and therefore equivalent in computational power to a Turing machine. Such systems are computationally powerful, but by definition they incorporate a lot of features, perhaps too much. In (Ibarra et al. in 2007) it was shown that their functionality may be limited without compromising its universality. The results presented herein continue the (Ibarra et al. 2007) line of work providing new formal forms. That is, new SN P simplified variants with a minimum set of functionalities but keeping the universal computational power. Computational Efficiency Analisys: In this thesis we study the computational efficiency of P systems with proteins on membranes. We show that this computational model is equivalent to parallel random access machine (PRAM) or alternating Turing machine because, we show P Systems with proteins can solve a PSPACE-Complete problem as QSAT (Quantified Propositional Satisfiability Problem) on polynomial time. This variant of P Systems with proteins is very efficient thanks to computational power of proteins to catalyze inter-cellular communication processes.
Resumo:
The nuclear and mitochondrial genomes coevolve to optimize approximately 100 different interactions necessary for an efficient ATP-generating system. This coevolution led to a species-specific compatibility between these genomes. We introduced mitochondrial DNA (mtDNA) from different primates into mtDNA-less human cells and selected for growth of cells with a functional oxidative phosphorylation system. mtDNA from common chimpanzee, pigmy chimpanzee, and gorilla were able to restore oxidative phosphorylation in the context of a human nuclear background, whereas mtDNA from orangutan, and species representative of Old-World monkeys, New-World monkeys, and lemurs were not. Oxygen consumption, a sensitive index of respiratory function, showed that mtDNA from chimpanzee, pigmy chimpanzee, and gorilla replaced the human mtDNA and restored respiration to essentially normal levels. Mitochondrial protein synthesis was also unaltered in successful “xenomitochondrial cybrids.” The abrupt failure of mtDNA from primate species that diverged from humans as recently as 8–18 million years ago to functionally replace human mtDNA suggests the presence of one or a few mutations affecting critical nuclear–mitochondrial genome interactions between these species. These cellular systems provide a demonstration of intergenus mtDNA transfer, expand more than 20-fold the number of mtDNA polymorphisms that can be analyzed in a human nuclear background, and provide a novel model for the study of nuclear–mitochondrial interactions.
Resumo:
Oscillating electric fields can be rectified by proteins in cell membranes to give rise to a dc transport of a substance across the membrane or a net conversion of a substrate to a product. This provides a basis for signal averaging and may be important for understanding the effects of weak extremely low frequency (ELF) electric fields on cellular systems. We consider the limits imposed by thermal and "excess" biological noise on the magnitude and exposure duration of such electric field-induced membrane activity. Under certain circumstances, the excess noise leads to an increase in the signal-to-noise ratio in a manner similar to processes labeled "stochastic resonance." Numerical results indicate that it is difficult to reconcile biological effects with low field strengths.
Resumo:
Neste trabalho foram investigados os mecanismos e o perfil cinético de processos nitrosativos do ponto de vista da nitrosação do indicador 4,5-diamino fluoresceina (DAF2) em células do tipo RAW 264.7. Também foi investigado o papel que ferro lábil (LIP) exerce em tais processos. O estudo cinético mostrou que a nitrosação do DAF2 é dependente de superóxido intracelular e se processa por dois mecanismos distintos denominados nitrosilação oxidativa e nitrosação. Observou-se que o perfil cinético da nitrosaçao do DAF2 sofre uma transição passando de dependente para independente com relação à concentração de NO, quando a concentração de NO se aproxima de 100-110nM. Este perfil está relacionado com a dinâmica de recombinação entre NO e O2¯ que dispara todo o processo de nitrosação do DAF2. No trabalho fica claro que processos nitrosativos que ocorrem pelos mesmos mecanismos podem apresentar perfis cinéticos completamente diferentes dependendo da localização onde ocorre a recombinação entre NO e O2¯. O ponto mais interessante foi a constatação de que quelantes permeáveis à membranas biológicas estimulam a nitrosação do DAF2 intracelular. Este efeito é decorrente da remoção de LIP intracelular que, surpreendementemente, apresenta papel antinitrosativo nas condições experimentais estudadas. O papel incomum antinitrosativo apresentado por LIP é analizado do ponto de vista da reação entre LIP e ONOO¯ que tem como produto nitrito, uma espécie não nitrosante. Estes resultados podem alterar a forma como LIP é visto em processos oxidativos e nitrosativos.
Resumo:
Chromones and xanthones are oxygen-containing heterocyclic compounds with bioactive properties widely reported in the literature, specially concerning to their antioxidant properties. The search for new natural and synthetic chromone and xanthone derivatives order to evaluate and discover new structural features rendering optimized biological effects has been a challenge. Thus, the aim of this work was to evaluate the scavenging activity of reactive oxygen (ROS) and nitrogen (RNS) species of new synthetic hydroxylated chromones and xanthones (Fig. 1) using in vitro non-cellular systems. These compounds exhibited scavenger effects dependent on the concentration, with IC50 values found at the micromolar range. The overall scavenging activity of chromones was better than xanthones, specially the one of chromone 3A. In conclusion, the novel tested chromone and xanthone scaffolds proved to be promising pharmacophores with potential therapeutic applications as antioxidant agents.
Resumo:
This paper presents a rectangular array antenna with a suitable signal-processing algorithm that is able to steer the beam in azimuth over a wide frequency band. In the previous approach, which was reported in the literature, an inverse discrete Fourier transform technique was proposed for obtaining the signal weighting coefficients. This approach was demonstrated for large arrays in which the physical parameters of the antenna elements were not considered. In this paper, a modified signal-weighting algorithm that works for arbitrary-size arrays is described. Its validity is demonstrated in examples of moderate-size arrays with real antenna elements. It is shown that in some cases, the original beam-forming algorithm fails, while the new algorithm is able to form the desired radiation pattern over a wide frequency band. The performance of the new algorithm is assessed for two cases when the mutual coupling between array elements is both neglected and taken into account.
Resumo:
To date, alpha-catenin has been best understood as an important cytoplasmic component of the classical cadherin complex responsible for cell-cell adhesion. By virtue of its capacity to bind F-actin, alpha-catenin was commonly envisaged to support cadherin function by coupling the adhesion receptor to the actin cytoskeleton. But is alpha-catenin solely the cadherin's handmaiden? A range of recent developments suggest, instead, that its biological activity is much more complex than previously appreciated. Evidence from cellular systems and model organisms demonstrates a clear, often dramatic, role for alpha-catenin in tissue organization and morphogenesis. The morphogenetic impact of alpha-catenin reflects its capacity to mediate functional cooperation between cadherins and the actin cytoskeleton, but is not confined to this. alpha-Catenin has a role in regulating cell proliferation and cadherin-independent pools of alpha-catenin may contribute to its functional impact.
Resumo:
The metabolic function of the glyoxalase system was investigated in (a) the differentiation and proliferation of human tumour cells in vitro, (b) the cell-free assembly of microtubules and (c) in the red blood cells during hyperglycaemia associated with Diabetes Mellitus. Chemically-induced differentiation of human promyelocytic HL60 leukaemia cells to neutrophils, and K562 erythroleukaemia cells, was accompanied by a decrease and an increase in the activity of glyoxalase I, respectively. Growth-arrest of Burkitt's lymphoma Raji cells and GM892 lymphoblastoid cells was accompanied by an increase and a decrease in the activity of glyoxalase I respectively. However, differentiation and growth arrest generally proceeded with an increase in the activity of glyoxalase II. Glyoxalase I activity did not consistently correlate with cell differentiation or proliferation status; hence, it is unlikely that glyoxalase I activity is either an indicator or a regulator of cell differentiation or proliferation. Conversely, glyoxalase II activity consistently increased during cell differentiation and growth-arrest and may be both an indicator and regulator of cell differentiation or proliferation. This may be related to the control of cellular microtubule assembly. S-D-Lactoylglutathione potentiated the cell-free, GTP-promoted assembly of microtubules. The effect was dose-related and was inhibited by glyoxalase II. During assembly, S-D-lactoylglutathione was consumed. This suggests that the glyoxalase system, through the influence of S-D-lactoylglutathione, may regulate the assembly of microtubules in cellular systems The whole blood concentrations of methylglyoxal and S-D-lactoylglutathione were increased in Diabetes Mellitus. There was no significant difference between red blood cell glyoxalase activities in diabetics, compared to healthy controls. However, insulin-dependent diabetic patients with retinopathy had a significantly higher glyoxalase I activity and a lower glyoxalase II activity, than patients without retinopathy. Diabetic retinopathy correlated with high glyoxalase I activity and low glyoxalase II activity and suggests the glyoxalase system may be involved in the development of diabetic complications.
Resumo:
Tumour promoting phorbol esters such as 12-0-tetradecanoylphorbol-13-acetate (TPA) exert a multitude of biological effects on many cellular systems, many of which are believed to be mediated via the activation of the enzyme protein kinase C (PKC). TPA and other biologically active phorbol esters inhibited the proliferation of the A549 human lung carcinoma cell line. However, after 5-6 days culture in the continued presence of the phorbol ester cells began to proliferate at a rate similar to that of untreated cells. Resistance to TPA was lost following subculturing, although subculture in the presence of 10 nM TPA for more than 9 weeks resulted in a more resistant phenotype. The selection of a TPA-resistant subpopulation was not responsible for the observed resistance. The antiproliferative properties of other PKC activators were investigated. Mezerein induced the same antiproliferative effects as TPA but synthetic diacylglycerols (DAGs), the presumed physiological ligands of PKC, exerted only a non-specific cytotoxic influence on growth. Bryostatins 1 and 2 were able to induce transient growth arrest of A549 cells in a manner similar to phorbol esters at nanomolar concentrations, but at higher concentrations blocked both their own antiproliferative action and also that of phorbol esters and mezerein. Fourteen compounds synthesized to mimic features of the phorbol ester pharmacophore and/or DAGs did not mimic the antiproliferative properties of TPA in A549 cells and exerted only a DAG-like non-specific cytotoxicity at high concentrations. The subcellular distribution and activity of PKC was determined following partial purification by non-denaturing polyacrylamide gel electrophoresis. Treatment with TPA, mezerein or bryostatins resulted in a concentration-dependent shift of PKC activity from the cytosol to cellular membranes within 30 min. Significant translocation was not observed on treatment with DAGs. Chronic exposure of cells to TPA caused a time- and concentration dependent down-regulation of functional PKC activity. A complete loss of PKC activity was also observed on treatment with growth-inhibitory concentrations of bryostatins. No PKC activity was detected in cells resistant to the growth-inhibitory influence of TPA. Measurement of intracellular Ca2+ concentrations using A549 cells cultured on Cytodex 1 microcarrier beads revealed that TPA, mezerein and the bryostatins induced a similar rapid rise in intracellular Ca2+ levels.
Resumo:
Transglutaminase 2 (TG2) is a multifunctional protein with diverse catalytic activities and biological roles. Its best studied function is the Ca2+-dependent transamidase activity leading to formation of γ-glutamyl-ε-lysine isopeptide crosslinks between proteins or γ-glutamyl-amine derivatives. TG2 has a poorly studied isopeptidase activity cleaving these bonds. We have developed and characterised TG2 mutants which are significantly deficient in transamidase activity while have normal or increased isopeptidase activity (W332F) and vice versa (W278F). The W332F mutation led to significant changes of both the Km and the Vmax kinetic parameters of the isopeptidase reaction of TG2 while its calcium and GTP sensitivity was similar to the wild type enzyme. The W278F mutation resulted in six times elevated amine incorporating transamidase activity demonstrating the regulatory significance of W278 and W332 in TG2 and that mutations can change opposed activities located at the same active site. The further application of our results in cellular systems may help to understand TG2 -driven physiological and pathological processes better and lead to novel therapeutic approaches where an increased amount of cross-linked proteins correlates with the manifestation of degenerative disorders.
Resumo:
Global connectivity, for anyone, at anyplace, at anytime, to provide high-speed, high-quality, and reliable communication channels for mobile devices, is now becoming a reality. The credit mainly goes to the recent technological advances in wireless communications comprised of a wide range of technologies, services, and applications to fulfill the particular needs of end-users in different deployment scenarios (Wi-Fi, WiMAX, and 3G/4G cellular systems). In such a heterogeneous wireless environment, one of the key ingredients to provide efficient ubiquitous computing with guaranteed quality and continuity of service is the design of intelligent handoff algorithms. Traditional single-metric handoff decision algorithms, such as Received Signal Strength (RSS) based, are not efficient and intelligent enough to minimize the number of unnecessary handoffs, decision delays, and call-dropping and/or blocking probabilities. This research presented a novel approach for the design and implementation of a multi-criteria vertical handoff algorithm for heterogeneous wireless networks. Several parallel Fuzzy Logic Controllers were utilized in combination with different types of ranking algorithms and metric weighting schemes to implement two major modules: the first module estimated the necessity of handoff, and the other module was developed to select the best network as the target of handoff. Simulations based on different traffic classes, utilizing various types of wireless networks were carried out by implementing a wireless test-bed inspired by the concept of Rudimentary Network Emulator (RUNE). Simulation results indicated that the proposed scheme provided better performance in terms of minimizing the unnecessary handoffs, call dropping, and call blocking and handoff blocking probabilities. When subjected to Conversational traffic and compared against the RSS-based reference algorithm, the proposed scheme, utilizing the FTOPSIS ranking algorithm, was able to reduce the average outage probability of MSs moving with high speeds by 17%, new call blocking probability by 22%, the handoff blocking probability by 16%, and the average handoff rate by 40%. The significant reduction in the resulted handoff rate provides MS with efficient power consumption, and more available battery life. These percentages indicated a higher probability of guaranteed session continuity and quality of the currently utilized service, resulting in higher user satisfaction levels.
Resumo:
Water activity, temperature and pH are determinants for biotic activity of cellular systems, biosphere function and, indeed, for all life processes. This study was carried out at high concentrations of glycerol, which concurrently reduces water activity and acts as a stress protectant, to characterize the biophysical capabilities of the most extremely xerophilic organisms known. These were the fungal xerophiles: Xeromyces bisporus (FRR 0025), Aspergillus penicillioides (JH06THJ) and Eurotium halophilicum (FRR 2471). High-glycerol spores were produced and germination was determined using 38 media in the 0.995–0.637 water activity range, 33 media in the 2.80–9.80 pH range and 10 incubation temperatures, from 2 to 50°C. Water activity was modified by supplementing media with glycerol+sucrose, glycerol+NaCl and glycerol+NaCl+sucrose which are known to be biologically permissive for X. bisporus, A. penicillioides and E. halophilicum respectively. The windows and rates for spore germination were quantified for water activity, pH and temperature; symmetry/asymmetry of the germination profiles were then determined in relation to supra- and sub-optimal conditions; and pH- and temperature optima for extreme xerophilicity were quantified. The windows for spore germination were ~1 to 0.637 water activity, pH 2.80–9.80 and > 10 and < 44°C, depending on strain. Germination profiles in relation to water activity and temperature were asymmetrical because conditions known to entropically disorder cellular macromolecules, i.e. supra-optimal water activity and high temperatures, were severely inhibitory. Implications of these processes were considered in relation to the in-situ ecology of extreme conditions and environments; the study also raises a number of unanswered questions which suggest the need for new lines of experimentation.
Resumo:
The evolution of cellular systems towards third generation (3G) or IMT-2000 seems to have a tendency to use W-CDMA as the standard access method, as ETSI decisions have showed. However, there is a question about the improvements in capacity and the wellness of this access method. One of the aspects that worry developers and researchers planning the third generation is the extended use of the Internet and more and more bandwidth hungry applications. This work shows the performance of a W-CDMA system simulated in a PC using cover maps generated with DC-Cell, a GIS based planning tool developed by the Technical University of Valencia, Spain. The maps are exported to MATLAB and used in the model. The system used consists of several microcells in a downtown area. We analyse the interference from users in the same cell and in adjacent cells and the effect in the system, assuming perfect control for each cell. The traffic generated by the simulator is voice and data. This model allows us to work with coverage that is more accurate and is a good approach to analyse the multiple access interference (MAI) problem in microcellular systems with irregular coverage. Finally, we compare the results obtained, with the performance of a similar system using TDMA.