990 resultados para Cellular factors


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Retinoblastoma tumor suppressor gene (RB) plays a role in a variety of human cancers. Experimental analyses have indicated that the protein product of the RB gene (pRb) plays a role in cell cycle regulation, and that this protein is required in cellular differentiation, senescence, and cell survival. pRb function is dependent on its ability to bind to cellular factors. There are multiple protein binding domains within pRb. Mutations within these domains which eliminate the ability of pRb to bind its targets result in loss of function. Loss of pRb function leads to tumorigenesis, although uncontrolled cellular proliferation is not a universal response to pRb inactivation. The ultimate response to the loss of pRb is influenced by both the genetic and epigenetic environments. Targeted disruption of RB in mice results in embryonic lethality, demonstrating the requirement for functional pRb in development. Close examination of various tissues from the embryos which lack wildtype RB shows problems in differentiation as well as showing induction of apoptosis. Although disruption of RB has provided useful information, complete inactivation of a gene precludes the possibility of discovering the functions that separate domains may have within the system. Creation of a dominant negative mutant by domain deletion whose phenotype is expressed in the presence of the wildtype may provide information about the intermediate functions of the protein. In addition, tissue specific targeting of a dominant negative mutant of pRb allows for comprehensive analysis of pRb function in organogenesis. In this thesis, a series of RB deletion mutants were created and tested for dominant negative activity as well as cellular localization. A tissue culture assay for dominant negative activity was developed which screens for the phenotype of apoptosis due to loss of pRb function. Two mutants from this series scored positive for dominant negative activity in this assay. The effect of these mutants within the assay environment can be explained by a model in which pRb acts as a facilitator of cell fate pathway decisions. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Viral systems have contributed tremendously to the understanding of eukaryotic molecular biology. The proportional pattern of retroviral RNA expression offers many clues into the alternative splicing of cellular transcripts. The MuSVts110 virus presents an unusual expression system, where the mechanistic combination of RNA splicing and cellular transformation can be physiologically manipulated. Splicing of MuSVts110 pre-mRNA occurs inefficiently (30%-50%) at 33$\sp\circ$C or below and is subdued at 39$\sp\circ$C ($<$5%). Like most alternatively spliced cellular and retroviral transcripts, the MuSVts110 pre-mRNA contains cis-acting intron and exon sequences that attenuate splicing. These include a splicing inhibitory sequence at the 3$\prime$ end of the MuSVts110 v-mos exon, called the E2 Distal Element (E2DE), and a sub-optimal 3$\prime$ splice site. The E2DE directly inhibits MuSVts110 RNA splicing in a sequence-specific fashion at 39$\sp\circ$C but not at 28$\sp\circ$C, potentially through the association of cellular factors. Inefficient MuSVts110 splicing is pre-dominantly attributed to the utilization of multiple weak branchpoint sequences located between $-113$ and $-34$ nucleotides upstream of the 3$\prime$ splice site. The molecular control of MuSVts110 splicing, represented primarily by scattered multiple inefficient branchpoint sequences that are conditionally modulated by the E2DE at higher growth temperatures, is discussed. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dictyostelium myosin II is activated by phosphorylation of its regulatory light chain by myosin light chain kinase A (MLCK-A), an unconventional MLCK that is not regulated by Ca2+/calmodulin. MLCK-A is activated by autophosphorylation of threonine-289 outside of the catalytic domain and by phosphorylation of threonine-166 in the activation loop by an unidentified kinase, but the signals controlling these phosphorylations are unknown. Treatment of cells with Con A results in quantitative phosphorylation of the regulatory light chain by MLCK-A, providing an opportunity to study MLCK-A’s activation mechanism. MLCK-A does not alter its cellular location upon treatment of cells with Con A, nor does it localize to the myosin-rich caps that form after treatment. However, MLCK-A activity rapidly increases 2- to 13-fold when Dictyostelium cells are exposed to Con A. This activation can occur in the absence of MLCK-A autophosphorylation. cGMP is a promising candidate for an intracellular messenger mediating Con A-triggered MLCK-A activation, as addition of cGMP to fresh Dictyostelium lysates increases MLCK-A activity 3- to 12-fold. The specific activity of MLCK-A in cGMP-treated lysates is 210-fold higher than that of recombinant MLCK-A, which is fully autophosphorylated, but lacks threonine-166 phosphorylation. Purified MLCK-A is not directly activated by cGMP, indicating that additional cellular factors, perhaps a kinase that phosphorylates threonine-166, are involved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

HIV entry into human cells is mediated by CD4 acting in concert with one of several members of the chemokine receptor superfamily. The resistance to HIV infection observed in individuals with defective CCR5 alleles indicated that this particular chemokine receptor plays a crucial role in the initiation of in vivo HIV infection. Expression of human CD4 transgene does not render mice susceptible to HIV infection because of structural differences between human and mouse CCR5. To ascertain whether expression of human CD4 and CCR5 is sufficient to make murine T lymphocytes susceptible to HIV infection, the lck promoter was used to direct the T cell-specific expression of human CD4 and CCR5 in transgenic mice. Peripheral blood mononuclear cells and splenocytes isolated from these mice expressed human CD4 and CCR5 and were infectible with selected M-tropic HIV isolates. After in vivo inoculation, HIV-infected cells were detected by DNA PCR in the spleen and lymph nodes of these transgenic mice, but HIV could not be cultured from these cells. This indicated that although transgenic expression of human CD4 and CCR5 permitted entry of HIV into the mouse cells, significant HIV infection was prevented by other blocks to HIV replication present in mouse cells. In addition to providing in vivo verification for the important role of CCR5 in T lymphocyte HIV infection, these transgenic mice represent a new in vivo model for understanding HIV pathogenesis by delineating species-specific cellular factors required for productive in vivo HIV infection. These mice should also prove useful for the assessment of potential therapeutic and preventative modalities, particularly vaccines.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Δ9-Desaturase is a key enzyme in the synthesis of desaturated fatty acyl-CoAs. Desaturase is an integral membrane protein induced in the endoplasmic reticulum by dietary manipulations and then rapidly degraded. The proteolytic machinery that specifically degrades desaturase and other short-lived proteins in the endoplasmic reticulum has not been identified. As the first step in identifying cellular factors involved in the degradation of desaturase, liver subcellular fractions of rats that had undergone induction of this enzyme were examined. In livers from induced animals, desaturase was present in the microsomal, nuclear (P-1), and subcellular fractions (P-2). Incubation of desaturase containing fractions at physiological pH and temperature led to the complete disappearance of the enzyme. Washing microsomes with a buffer containing high salt decreased desaturase degradation activity. N-terminal sequence analysis of desaturase freshly isolated from the P-1 fraction without incubation indicated the absence of three residues from the N terminus, but the mobility of this desaturase preparation on SDS-PAGE was identical to the microsomal desaturase, which contains a masked N terminus under similar purification procedures. Addition of concentrated cytosol or the high-salt wash fraction did not enhance the desaturase degradation in the washed microsomes. Extensive degradation of desaturase in the high-salt washed microsomes could be restored by supplementation of the membranes with the lipid and protein components essential for the reconstituted desaturase catalytic activity. Lysosomotrophic agents leupeptin and pepstatin A were ineffective in inhibiting desaturase degradation. The calpain inhibitor, N-acetyl-leucyl-leucyl-methional, or the proteosome inhibitor, Streptomyces metabolite, lactacystin, did not inhibit the degradation of desaturase in the microsomal or the P-1 and P-2 fractions. These results show that the selective degradation of desaturase is likely to be independent of the lysosomal and the proteosome systems. The reconstitution of complete degradation of desaturase in the high-salt–washed microsomes by the components essential for its catalytic activity reflects that the degradation of this enzyme may depend on a specific orientation of desaturase and intramembranous interactions between desaturase and the responsible protease.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Replication of the single-stranded linear DNA genome of parvovirus minute virus of mice (MVM) starts with complementary strand synthesis from the 3′-terminal snap-back telomere, which serves as a primer for the formation of double-stranded replicative form (RF) DNA. This DNA elongation reaction, designated conversion, is exclusively dependent on cellular factors. In cell extracts, we found that complementary strand synthesis was inhibited by the cyclin-dependent kinase inhibitor p21WAF1/CIP1 and rescued by the addition of proliferating cell nuclear antigen, arguing for the involvement of DNA polymerase (Pol) δ in the conversion reaction. In vivo time course analyses using synchronized MVM-infected A9 cells allowed initial detection of MVM RF DNA at the G1/S phase transition, coinciding with the onset of cyclin A expression and cyclin A-associated kinase activity. Under in vitro conditions, formation of RF DNA was efficiently supported by A9 S cell extracts, but only marginally by G1 cell extracts. Addition of recombinant cyclin A stimulated DNA conversion in G1 cell extracts, and correlated with a concomitant increase in cyclin A-associated kinase activity. Conversely, a specific antibody neutralizing cyclin A-dependent kinase activity, abolished the capacity of S cell extracts for DNA conversion. We found no evidence for the involvement of cyclin E in the regulation of the conversion reaction. We conclude that cyclin A is necessary for activation of complementary strand synthesis, which we propose as a model reaction to study the cell cycle regulation of the Pol δ-dependent elongation machinery.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The 5′-untranslated region of hepatitis C virus (HCV) is highly conserved, folds into a complex secondary structure, and functions as an internal ribosome entry site (IRES) to initiate translation of HCV proteins. We have developed a selection system based on a randomized hairpin ribozyme gene library to identify cellular factors involved in HCV IRES function. A retroviral vector ribozyme library with randomized target recognition sequences was introduced into HeLa cells, stably expressing a bicistronic construct encoding the hygromycin B phosphotransferase gene and the herpes simplex virus thymidine kinase gene (HSV-tk). Translation of the HSV-tk gene was mediated by the HCV IRES. Cells expressing ribozymes that inhibit HCV IRES-mediated translation of HSV-tk were selected via their resistance to both ganciclovir and hygromycin B. Two ribozymes reproducibly conferred the ganciclovir-resistant phenotype and were shown to inhibit IRES-mediated translation of HCV core protein but did not inhibit cap-dependent protein translation or cell growth. The functional targets of these ribozymes were identified as the gamma subunits of human eukaryotic initiation factors 2B (eIF2Bγ) and 2 (eIF2γ), respectively. The involvement of eIF2Bγ and eIF2γ in HCV IRES-mediated translation was further validated by ribozymes directed against additional sites within the mRNAs of these genes. In addition to leading to the identification of cellular IRES cofactors, ribozymes obtained from this cellular selection system could be directly used to specifically inhibit HCV viral translation, thereby facilitating the development of new antiviral strategies for HCV infection.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

V(D)J recombination generates a remarkably diverse repertoire of antigen receptors through the rearrangement of germline DNA. Terminal deoxynucleotidyl transferase (TdT), a polymerase that adds random nucleotides (N regions) to recombination junctions, is a key enzyme contributing to this diversity. The current model is that TdT adds N regions during V(D)J recombination by random collision with the DNA ends, without a dependence on other cellular factors. We previously demonstrated, however, that V(D)J junctions from Ku80-deficient mice unexpectedly lack N regions, although the mechanism responsible for this effect remains undefined in the mouse system. One possibility is that junctions are formed in these mice during a stage in development when TdT is not expressed. Alternatively, Ku80 may be required for the expression, nuclear localization or enzymatic activity of TdT. Here we show that V(D)J junctions isolated from Ku80-deficient fibroblasts are devoid of N regions, as were junctions in Ku80-deficient mice. In these cells TdT protein is abundant at the time of recombination, localizes properly to the nucleus and is enzymatically active. Based on these data, we propose that TdT does not add to recombination junctions through random collision but is actively recruited to the V(D)J recombinase complex by Ku80.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Correct folding of newly synthesized proteins is proposed to be assisted by molecular chaperones and folding catalysts. To identify cellular factors involved in the initial stages of this process we searched for proteins associated with nascent polypeptide chains. In an Escherichia coli transcription/translation system synthesizing beta-galactosidase we identified a 58-kDa protein which associated with translating ribosomes but dissociated from these ribosomes upon release of nascent beta-galactosidase. N-terminal sequencing identified it as trigger factor, previously implicated in protein secretion. Direct evidence for association of trigger factor with nascent polypeptide chains was obtained by crosslinking. In a wheat germ translation system complemented with E. coli lysates, epsilon-4-(3-trifluoromethyldiazirino)benzoic acid-lysine residues were incorporated into nascent secretory preprolactin and a nonsecretory preprolactin mutant. Trigger factor crosslinked to both types of nascent chains, provided they were ribosome bound. Trigger factor contains key residues of the substrate-binding pocket of FK506-binding protein-type peptidyl-prolyl-cis/trans-isomerases and has prolyl isomerase activity in vitro. We propose that trigger factor is a folding catalyst acting cotranslationally.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Transcription of the late genes of simian virus 40 (SV40) is repressed during the early phase of the lytic cycle of infection of binding of cellular factors, called IBP-s, to the SV40 late promoter; repression is relieved after the onset of viral DNA replication by titration of these repressors. Preliminary data indicated that one of the major components of IBP-s was human estrogen-related receptor 1 (hERR1). We show here that several members of the steroid/thyroid hormone receptor superfamily, including testis receptor 2, thyroid receptor alpha 1 in combination with retinoid X receptor alpha, chicken ovalbumin upstream promoter transcription factors 1 and 2 (COUP-TF1 and COUP-TF2), as well as hERR1, possess the properties of IBP-s. These receptors bind specifically to hormone receptor binding sites present in the SV40 major late promoter. Recombinant COUP-TF1 specifically represses transcription from the SV40 major late promoter in a cell-free transcription system. Expression of COUP-TF1, COUP-TF2, or hERR1 in monkey cells results in repression of the SV40 late promoter, but not the early promoter, in the absence of the virally encoded large tumor antigen. Overexpression of COUP-TF1 leads to a delay in the early-to-late switch in SV40 gene expression during the lytic cycle of infection. Thus, members of this superfamily can play major direct roles in regulating expression of SV40. Possibly, natural or synthetic ligands to these receptors can serve as antiviral drugs. Our findings also provide the basis for the development of assays to screen for the ligands to testis receptor 2 and hERR1.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Camptothecin is a potent antineoplastic agent that interferes with the action of eukaryotic DNA topoisomerase I; the covalent enzyme-DNA intermediate is reversibly stabilized, leading to G2 arrest and cell death. We used a genetic screen to identify cellular factors, other than DNA topoisomerase I, that participate in the process of camptothecin-induced cell death. Following ethyl methanesulfonate mutagenesis of top1 delta yeast cells expressing plasmid-borne wild-type DNA topoisomerase I, six dominant suppressors of camptothecin toxicity were isolated that define a single genetic locus, sct1. Mutant SCT1 cells expressed DNA topoisomerase I protein of similar specific activity and camptothecin sensitivity to that of congenic, drug-sensitive sct1 cells, yet were resistant to camptothecin-mediated lethality. Moreover, camptothecin-treated SCT1 cells did not exhibit the G2-arrested, terminal phenotype characteristic of drug-treated wild-type cells. SCT1 cell sensitivity to other DNA-damaging agents suggests that alterations in SCT1 function suppress camptothecin-induced DNA damage produced in the presence of yeast DNA topoisomerase I.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The mechanisms responsible for cytokine-mediated antiviral effects are not fully understood. We approached this problem by studying the outcome of intraocular herpes simplex (HSV) infection in transgenic mice that express interferon gamma in the photoreceptor cells of the retina. These transgenic mice showed selective survival from lethal HSV-2 infection manifested in both eyes, the optic nerve, and the brain. Although transgenic mice developed greater inflammatory responses to the virus in the eyes, inflammation and viral titers in their brains were equivalent to nontransgenic mice. However, survival of transgenic mice correlated with markedly lower numbers of central neurons undergoing apoptosis. The protooncogene Bcl2 was found to be induced in the HSV-2-infected brains of transgenic mice, allowing us to speculate on its role in fostering neuronal survival in this model. These observations imply a complex interaction between cytokine, virus, and host cellular factors. Our results suggest a cytokine-regulated salvage pathway that allows for survival of infected neurons.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Les virus ont besoin d’interagir avec des facteurs cellulaires pour se répliquer et se propager dans les cellules d’hôtes. Une étude de l'interactome des protéines du virus d'hépatite C (VHC) par Germain et al. (2014) a permis d'élucider de nouvelles interactions virus-hôte. L'étude a également démontré que la majorité des facteurs de l'hôte n'avaient pas d'effet sur la réplication du virus. Ces travaux suggèrent que la majorité des protéines ont un rôle dans d'autres processus cellulaires tel que la réponse innée antivirale et ciblées pas le virus dans des mécanismes d'évasion immune. Pour tester cette hypothèse, 132 interactant virus-hôtes ont été sélectionnés et évalués par silençage génique dans un criblage d'ARNi sur la production interferon-beta (IFNB1). Nous avons ainsi observé que les réductions de l'expression de 53 interactants virus-hôte modulent la réponse antivirale innée. Une étude dans les termes de gène d'ontologie (GO) démontre un enrichissement de ces protéines au transport nucléocytoplasmique et au complexe du pore nucléaire. De plus, les gènes associés avec ces termes (CSE1L, KPNB1, RAN, TNPO1 et XPO1) ont été caractérisé comme des interactant de la protéine NS3/4A par Germain et al. (2014), et comme des régulateurs positives de la réponse innée antivirale. Comme le VHC se réplique dans le cytoplasme, nous proposons que ces interactions à des protéines associées avec le noyau confèrent un avantage de réplication et bénéficient au virus en interférant avec des processus cellulaire tel que la réponse innée. Cette réponse innée antivirale requiert la translocation nucléaire des facteurs transcriptionnelles IRF3 et NF-κB p65 pour la production des IFNs de type I. Un essai de microscopie a été développé afin d'évaluer l’effet du silençage de 60 gènes exprimant des protéines associés au complexe du pore nucléaire et au transport nucléocytoplasmique sur la translocation d’IRF3 et NF-κB p65 par un criblage ARNi lors d’une cinétique d'infection virale. En conclusion, l’étude démontre qu’il y a plusieurs protéines qui sont impliqués dans le transport de ces facteurs transcriptionnelles pendant une infection virale et peut affecter la production IFNB1 à différents niveaux de la réponse d'immunité antivirale. L'étude aussi suggère que l'effet de ces facteurs de transport sur la réponse innée est peut être un mécanisme d'évasion par des virus comme VHC.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The human immunodeficiency virus type-1 (HIV-1) genome contains multiple, highly conserved structural RNA domains that play key roles in essential viral processes. Interference with the function of these RNA domains either by disrupting their structures or by blocking their interaction with viral or cellular factors may seriously compromise HIV-1 viability. RNA aptamers are amongst the most promising synthetic molecules able to interact with structural domains of viral genomes. However, aptamer shortening up to their minimal active domain is usually necessary for scaling up production, what requires very time-consuming, trial-and-error approaches. Here we report on the in vitro selection of 64 nt-long specific aptamers against the complete 5' -untranslated region of HIV-1 genome, which inhibit more than 75% of HIV-1 production in a human cell line. The analysis of the selected sequences and structures allowed for the identification of a highly conserved 16 nt-long stem-loop motif containing a common 8 nt-long apical loop. Based on this result, an in silico designed 16 nt-long RNA aptamer, termed RNApt16, was synthesized, with sequence 5'-CCCCGGCAAGGAGGGG-3-'. The HIV-1 inhibition efficiency of such an aptamer was close to 85%, thus constituting the shortest RNA molecule so far described that efficiently interferes with HIV-1 replication.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coccolithophores are unicellular phytoplankton that are characterized by the presence intricately formed calcite scales (coccoliths) on their surfaces. In most cases coccolith formation is an entirely intracellular process - crystal growth is confined within a Golgi-derived vesicle. A wide range of coccolith morphologies can be found amongst the different coccolithophore groups. This review discusses the cellular factors that regulate coccolith production, from the roles of organic components, endomembrane organization and cytoskeleton to the mechanisms of delivery of substrates to the calcifying compartment. New findings are also providing important information on how the delivery of substrates to the calcification site is co-ordinated with the removal of H(+) that are a bi-product of the calcification reaction. While there appear to be a number of species-specific features of the structural and biochemical components underlying coccolith formation, the fluxes of Ca(2+) and a HCO3(-) required to support coccolith formation appear to involve spatially organized recruitment of conserved transport processes.