959 resultados para Cellular automata models
Resumo:
In a probabilistic cellular automaton in which all local transitions have positive probability, the problem of keeping a bit of information for more than a constant number of steps is nontrivial, even in an infinite automaton. Still, there is a solution in 2 dimensions, and this solution can be used to construct a simple 3-dimensional discrete-time universal fault-tolerant cellular automaton. This technique does not help much to solve the following problems: remembering a bit of information in 1 dimension; computing in dimensions lower than 3; computing in any dimension with non-synchronized transitions. Our more complex technique organizes the cells in blocks that perform a reliable simulation of a second (generalized) cellular automaton. The cells of the latter automaton are also organized in blocks, simulating even more reliably a third automaton, etc. Since all this (a possibly infinite hierarchy) is organized in "software", it must be under repair all the time from damage caused by errors. A large part of the problem is essentially self-stabilization recovering from a mess of arbitrary-size and content caused by the faults. The present paper constructs an asynchronous one-dimensional fault-tolerant cellular automaton, with the further feature of "self-organization". The latter means that unless a large amount of input information must be given, the initial configuration can be chosen to be periodical with a small period.
Resumo:
In this paper we study the classification of spatiotemporal pattern of one-dimensional cellular automata (CA) whereas the classification comprises CA rules including their initial conditions. We propose an exploratory analysis method based on the normalized compression distance (NCD) of spatiotemporal patterns which is used as dissimilarity measure for a hierarchical clustering. Our approach is different with respect to the following points. First, the classification of spatiotemporal pattern is comparative because the NCD evaluates explicitly the difference of compressibility among two objects, e.g., strings corresponding to spatiotemporal patterns. This is in contrast to all other measures applied so far in a similar context because they are essentially univariate. Second, Kolmogorov complexity, which underlies the NCD, was used in the classification of CA with respect to their spatiotemporal pattern. Third, our method is semiautomatic allowing us to investigate hundreds or thousands of CA rules or initial conditions simultaneously to gain insights into their organizational structure. Our numerical results are not only plausible confirming previous classification attempts but also shed light on the intricate influence of random initial conditions on the classification results.
Resumo:
As a potential alternative to CMOS technology, QCA provides an interesting paradigm in both communication and computation. However, QCAs unique four-phase clocking scheme and timing constraints present serious timing issues for interconnection and feedback. In this work, a cut-set retiming design procedure is proposed to resolve these QCA timing issues. The proposed design procedure can accommodate QCAs unique characteristics by performing delay-transfer and time-scaling to reallocate the existing delays so as to achieve efficient clocking zone assignment. Cut-set retiming makes it possible to effectively design relatively complex QCA circuits that include feedback. It utilizes the similar characteristics of synchronization, deep pipelines and local interconnections common to both QCA and systolic architectures. As a case study, a systolic Montgomery modular multiplier is designed to illustrate the procedure. Furthermore, a nonsystolic architecture, an S27 benchmark circuit, is designed and compared with previous designs. The comparison shows that the cut-set retiming method achieves a more efficient design, with a reduction of 22%, 44%, and 46% in terms of cell count, area, and latency, respectively.
Resumo:
As a post-CMOS technology, the incipient Quantum-dot Cellular Automata technology has various advantages. A key aspect which makes it highly desirable is low power dissipation. One method that is used to analyse power dissipation in QCA circuits is bit erasure analysis. This method has been applied to analyse previously proposed QCA binary adders. However, a number of improved QCA adders have been proposed more recently that have only been evaluated in terms of area and speed. As the three key performance metrics for QCA circuits are speed, area and power, in this paper, a bit erasure analysis of these adders will be presented to determine their power dissipation. The adders to be analysed are the Carry Flow Adder (CFA), Brent-Kung Adder (B-K), Ladner-Fischer Adder (L-F) and a more recently developed area-delay efficient adder. This research will allow for a more comprehensive comparison between the different QCA adder proposals. To the best of the authors' knowledge, this is the first time power dissipation analysis has been carried out on these adders.
Resumo:
Quantum-dot cellular automata (QCA) is potentially a very attractive alternative to CMOS for future digital designs. Circuit designs in QCA have been extensively studied. However, how to properly evaluate the QCA circuits has not been carefully considered. To date, metrics and area-delay cost functions directly mapped from CMOS technology have been used to compare QCA designs, which is inappropriate due to the differences between these two technologies. In this paper, several cost metrics specifically aimed at QCA circuits are studied. It is found that delay, the number of QCA logic gates, and the number and type of crossovers, are important metrics that should be considered when comparing QCA designs. A family of new cost functions for QCA circuits is proposed. As fundamental components in QCA computing arithmetic, QCA adders are reviewed and evaluated with the proposed cost functions. By taking the new cost metrics into account, previous best adders become unattractive and it has been shown that different optimization goals lead to different “best” adders.
Resumo:
Applications that cannot tolerate the loss of accuracy that results from binary arithmetic demand hardware decimal arithmetic designs. Binary arithmetic in Quantum-dot cellular automata (QCA) technology has been extensively investigated in recent years. However, only limited attention has been paid to QCA decimal arithmetic. In this paper, two cost-efficient binary-coded decimal (BCD) adders are presented. One is based on the carry flow adder (CFA) using a conventional correction method. The other uses the carry look ahead (CLA) algorithm which is the first QCA CLA decimal adder proposed to date. Compared with previous designs, both decimal adders achieve better performance in terms of latency and overall cost. The proposed CFA-based BCD adder has the smallest area with the least number of cells. The proposed CLA-based BCD adder is the fastest with an increase in speed of over 60% when compared with the previous fastest decimal QCA adder. It also has the lowest overall cost with a reduction of over 90% when compared with the previous most cost-efficient design.
Resumo:
One of the most important problems in the theory of cellular automata (CA) is determining the proportion of cells in a specific state after a given number of time iterations. We approach this problem using patterns in preimage sets - that is, the set of blocks which iterate to the desired output. This allows us to construct a response curve - a relationship between the proportion of cells in state 1 after niterations as a function of the initial proportion. We derive response curve formulae for many two-dimensional deterministic CA rules with L-neighbourhood. For all remaining rules, we find experimental response curves. We also use preimage sets to classify surjective rules. In the last part of the thesis, we consider a special class of one-dimensional probabilistic CA rules. We find response surface formula for these rules and experimental response surfaces for all remaining rules.
Resumo:
When the food supply flnishes, or when the larvae of blowflies complete their development and migrate prior to the total removal of the larval substrate, they disperse to find adequate places for pupation, a process known as post-feeding larval dispersal. Based on experimental data of the Initial and final configuration of the dispersion, the reproduction of such spatio-temporal behavior is achieved here by means of the evolutionary search for cellular automata with a distinct transition rule associated with each cell, also known as a nonuniform cellular automata, and with two states per cell in the lattice. Two-dimensional regular lattices and multivalued states will be considered and a practical question is the necessity of discovering a proper set of transition rules. Given that the number of rules is related to the number of cells in the lattice, the search space is very large and an evolution strategy is then considered to optimize the parameters of the transition rules, with two transition rules per cell. As the parameters to be optimized admit a physical interpretation, the obtained computational model can be analyzed to raise some hypothetical explanation of the observed spatiotemporal behavior. © 2006 IEEE.
Resumo:
This study focused on representing spatio-temporal patterns of fungal dispersal using cellular automata. Square lattices were used, with each site representing a host for a hypothetical fungus population. Four possible host states were allowed: resistant, permissive, latent or infectious. In this model, the probability of infection for each of the healthy states (permissive or resistant) in a time step was determined as a function of the host's susceptibility, seasonality, and the number of infectious sites and the distance between them. It was also assumed that infected sites become infectious after a pre-specified latency period, and that recovery is not possible. Several scenarios were simulated to understand the contribution of the model's parameters and the spatial structure on the dynamic behaviour of the modelling system. The model showed good capability for representing the spatio-temporal pattern of fungus dispersal over planar surfaces. With a specific problem in mind, the model can be easily modified and used to describe field behaviour, which can contribute to the conservation and development of management strategies for both natural and agricultural systems. © 2012 Elsevier B.V.
Resumo:
A chaotic encryption algorithm is proposed based on the "Life-like" cellular automata (CA), which acts as a pseudo-random generator (PRNG). The paper main focus is to use chaos theory to cryptography. Thus, CA was explored to look for this "chaos" property. This way, the manuscript is more concerning on tests like: Lyapunov exponent, Entropy and Hamming distance to measure the chaos in CA, as well as statistic analysis like DIEHARD and ENT suites. Our results achieved higher randomness quality than others ciphers in literature. These results reinforce the supposition of a strong relationship between chaos and the randomness quality. Thus, the "chaos" property of CA is a good reason to be employed in cryptography, furthermore, for its simplicity, low cost of implementation and respectable encryption power. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
In this work, the algebraic properties of the local transition functions of elementary cellular automata (ECA) were analysed. Specifically, a classification of such cellular automata was done according to their algebraic degree, the balancedness, the resiliency, nonlinearity, the propagation criterion and the existence of non-zero linear structures. It is shown that there is not any ECA satisfying all properties at the same time.
Resumo:
Estudio de la dinámica de una población donde los individuos son contribuyentes (pagadores de impuestos) o no mediante un autómata celular 2D