969 resultados para Cell invasion, Coalescence, Interacting populations, Diffusion, Proliferation, Cell death


Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Programmed cell death 1 (PD-1) receptor triggering by PD ligand 1 (PD-L1) inhibits T cell activation. PD-L1 expression was detected in different malignancies and associated with poor prognosis. Therapeutic antibodies inhibiting PD-1/PD-L1 interaction have been developed. MATERIALS AND METHODS A tissue microarray (n=1491) including healthy colon mucosa and clinically annotated colorectal cancer (CRC) specimens was stained with two PD-L1 specific antibody preparations. Surgically excised CRC specimens were enzymatically digested and analysed for cluster of differentiation 8 (CD8) and PD-1 expression. RESULTS Strong PD-L1 expression was observed in 37% of mismatch repair (MMR)-proficient and in 29% of MMR-deficient CRC. In MMR-proficient CRC strong PD-L1 expression correlated with infiltration by CD8(+) lymphocytes (P=0.0001) which did not express PD-1. In univariate analysis, strong PD-L1 expression in MMR-proficient CRC was significantly associated with early T stage, absence of lymph node metastases, lower tumour grade, absence of vascular invasion and significantly improved survival in training (P=0.0001) and validation (P=0.03) sets. A similar trend (P=0.052) was also detectable in multivariate analysis including age, sex, T stage, N stage, tumour grade, vascular invasion, invasive margin and MMR status. Interestingly, programmed death receptor ligand 1 (PDL-1) and interferon (IFN)-γ gene expression, as detected by quantitative reverse transcriptase polymerase chain reaction (RT-PCR) in fresh frozen CRC specimens (n=42) were found to be significantly associated (r=0.33, P=0.03). CONCLUSION PD-L1 expression is paradoxically associated with improved survival in MMR-proficient CRC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The number of neurons in the mammalian brain is determined by a balance between cell proliferation and programmed cell death. Recent studies indicated that Bcl-XL prevents, whereas Caspase-3 mediates, cell death in the developing nervous system, but whether Bcl-XL directly blocks the apoptotic function of Caspase-3 in vivo is not known. To examine this question, we generated bcl-x/caspase-3 double mutants and found that caspase-3 deficiency abrogated the increased apoptosis of postmitotic neurons but not the increased hematopoietic cell death and embryonic lethality caused by the bcl-x mutation. In contrast, caspase-3, but not bcl-x, deficiency changed the normal incidence of neuronal progenitor cell apoptosis, consistent with the lack of expression of Bcl-XL in the proliferative population of the embryonic cortex. Thus, although Caspase-3 is epistatically downstream to Bcl-XL in postmitotic neurons, it independently regulates apoptosis of neuronal founder cells. Taken together, these results establish a role of programmed cell death in regulating the size of progenitor population in the central nervous system, a function that is distinct from the classic role of cell death in matching postmitotic neuronal population with postsynaptic targets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of Schwann cells, the myelin-forming glial cells of the vertebrate peripheral nervous system, involves a neonatal phase of proliferation in which cells migrate along and segregate newly formed axons. Withdrawal from the cell cycle, around postnatal days 2-4 in rodents, initiates terminal differentiation to the myelinating state. During this time, Schwann cell number is subject to stringent regulation such that within the first postnatal week, axons and myelinating Schwann cells attain the one-to-one relationship characteristic of the mature nerve. The mechanisms that underly this developmental control remain largely undefined. In this report, we examine the role of apoptosis in the determination of postnatal Schwann cell number. We find that Schwann cells isolated from postnatal day 3 rat sciatic nerve undergo apoptosis in vitro upon serum withdrawal and that Schwann cell death can be prevented by beta forms of neuregulin (NRG-beta) but not by fibroblast growth factor 2 or platelet-derived growth factors AA and BB. This NRG-beta-mediated Schwann cell survival is apparently transduced through an ErbB2/ErbB3 receptor heterodimer. We also provide evidence that postnatal Schwann cells undergo developmentally regulated apoptosis in vivo. Together with other recent findings, these results suggest that Schwann cell apoptosis may play an important role in peripheral nerve development and that Schwann cell survival may be regulated by access to axonally derived NRG.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The bcl-2 protooncogene, which protects various cell types from apoptotic cell death, is expressed in the developing and adult nervous system. To explore its role in regulation of neuronal cell death, we generated transgenic mice expressing Bcl-2 under the control of the neuron-specific enolase promoter, which forced expression uniquely in neurons. Sensory neurons isolated from dorsal root ganglia of newborn mice normally require nerve growth factor for their survival in culture, but those from the bcl-2 transgenic mice showed enhanced survival in its absence. Furthermore, apoptotic death of motor neurons after axotomy of the sciatic nerve was inhibited in these mice. The number of neurons in two neuronal populations from the central and peripheral nervous system was increased by 30%, indicating that Bcl-2 expression can protect neurons from cell death during development. The generation of these transgenic mice suggests that Bcl-2 may play an important role in survival of neurons both during development and throughout adult life.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mitochondria are involved in energy supply, signaling, cell death and cellular differentiation and have been implicated in several human diseases. Neks (NIMA-related kinases) represent a family of mammal protein kinases that play essential roles in cell-cycle progression, but other functions have recently been related. A yeast two-hybrid (Y2H) screen was performed to identify and characterize Nek5 interaction partners and the mitochondrial proteins Cox11, MTX-2 and BCLAF1 were retrieved. Apoptosis assay showed protective effects of stable hNek5 expression from Hek293-T's cell death after thapsigargin treatment (2μM). Nek5 silenced cells as well as cells expressing a kinase dead version of Nek5, displayed an increase in ROS formation after 4h of thapsigargin treatment. Mitochondrial respiratory chain activity was found decreased upon stable hNek5expression. Cells silenced for hNek5 on the other hand presented 1.7 fold increased basal rates of respiration, especially at the electrons transfer steps from TMPD to cytochrome c and at the complex II. In conclusion, our data suggest for the first time mitochondrial localization and functions for Nek5 and its participation in cell death and cell respiration regulation. Stable expression of hNek5 in Hek293T cells resulted in enhanced cell viability, decreased cell death and drug resistance, while depletion of hNek5by shRNA overcame cancer cell drug resistance and induced apoptosis in vitro. Stable expression of hNek5 also inhibits thapsigargin promoted apoptosis and the respiratory chain complex IV in HEK293T cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Upon apoptosis induction, translocation of mammalian mitochondrial endonuclease G (EndoG) to the nucleus coincides with large-scale DNA fragmentation. Here, we describe for the first time a homologue of EndoG in filamentous fungi by investigating if the Aspergillus nidulans homologue of the EndoG gene, named nucA(EndoG), is being activated during farnesol-induced cell death. Our results suggest that NucA is not involved in cell death, but it plays a role in the DNA-damaging response in A. nidulans.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The neurotrophin receptor (p75NTR) is best known for mediating tropic support by participating in the formation of high-affinity nerve growth factor (NGF) receptor complexes with trkA, however, p75NTR more recently has been shown to act as a bona fide death-signaling receptor, which can signal independently of trkA. This article discusses the evidence for an active role of p75NTR in neuronal cell death and the mechanisms controlling this process, including roles for Bcl-2 family members, the c-jun stress kinase JNK, the transcription factor nuclear factor kappa B (NF kappa B), and caspases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The causes of schizophrenia are unknown, but there is evidence linking subtle deviations in neural development with schizophrenia. Embryonic brain development cannot be studied in an adult with schizophrenia, but neurogenesis and early events in neuronal differentiation can be investigated throughout adult life in the human olfactory epithelium. Our past research has demonstrated that neuronal cultures can be derived from biopsy of the human adult olfactory epithelium. In the present study, we examined mechanisms related to neurogenesis and neuronal differentiation in adults with schizophrenia versus well controls. Forty biopsies were collected under local anaesthesia from ten individuals with DSM III-R schizophrenia and ten age- and sex-matched well controls. All patients, except one, were receiving antipsychotic medication at the time of the biopsy, Immunostaining for neuronal markers indicated that neurogenesis occurred in the biopsies from both patients and controls since all contained cells expressing tubulin and/or olfactory marker protein. The major findings of this study are: 1. biopsies from patients with schizophrenia showed a significantly reduced ability to attach to the culture slide: 29.9% of patient biopsies attached compared to 73.5% of control biopsies; 2. biopsies from patients with schizophrenia had a significantly greater proportion of cells undergoing mitosis: 0.69% in the patients compared to 0.29% in the controls; and 3. dopamine (10 mu M) significantly increased the proportion of apoptotic cells in the control cultures but significantly decreased the proportion in patients' cultures. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

1. The neurotrophin receptor p75NTR has been shown to mediate neuronal cell death after nerve injury. 2. Down-regulation of p75NTR by antisense oligonucleotides is able to inhibit both sensory and motor neuron death and this treatment is more effective than treatment with growth factors. 3. p75NTR induces cell death by a unique death signalling pathway involving transcription factors (nuclear factor kappa B and c-jun), Bcl-2 family members and caspases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Administration of polyamines into the central nervous system results in tissue damage, possibly through the excitotoxic actions of the NMDA receptor. Direct injection of 100 nmol of spermine into the rat striatum produced a lesion equivalent to approximately 50% of the striatum. Analysis of the DNA in this region revealed the distinct ladder-like pattern of degradation often associated with apoptosis. This DNA fragmentation was confirmed in vivo using terminal deoxynucleotidyl-transferase-mediated biotinylated deoxyuridine triphosphate nick end labelling (TUNEL). The morphology of the TUNEL-positive cells showed marked differences at the needle tract when compared with cells in damaged areas away from the needle tract, suggesting a differential mechanism of cell death in these two regions. The patterns of p53, c-Fos and c-Jun protein expression were determined using immunohistochemistry. The number of p53-immunoreactive cells increased up to 14 h and returned to basal levels by 24 h. c-Fos protein expression transiently increased, peaking at 8 h after injection, c-Jun exhibited a protracted pattern of expression, remaining elevated up to 24 h. p53 protein expression was colocalised with TUNEL staining in areas away from the needle tract, but not in cells at the needle tract, suggesting once again a differential mechanism of cell death. At 14 h, c-Fos and c-Jun were not colocalised with TUNEL staining, suggesting that they are either not involved with the cell death process or that the time course of protein expression and the onset of DNA fragmentation do not overlap. This work represents the first characterisation of processes associated with cell death induced by spermine in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cytoplasmic juxtamembrane region of the p75 neurotrophin receptor (p75(NTR)) has been found to be necessary and sufficient to initiate neural cell death. The region was named Chopper to distinguish it from CD95-like death domains. A 29-amino acid peptide corresponding to the Chopper region induced caspase- and calpain-mediated death in a variety of neural and nonneural cell types and was not inhibited by signaling through Trk (unlike killing by full-length p75(NTR)). Chopper triggered cell death only when bound to the plasma membrane by a lipid anchor, whereas non-anchored Chopper acted in a dominant-negative manner, blocking p75(NTR)-mediated death both in vitro and in vivo. Removal of the ectodomain of p75(NTR) increased the potency of Chopper activity, suggesting that it regulates the association of Chopper with downstream signaling proteins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sepsis induces a systemic inflammatory response leading to tissue damage and cell death. LPS tolerance affects inflammatory response. To comprehend potential new mechanisms of immune regulation in endotoxemia, we examined macrophage mRNA expression by macroarray affected by LPS tolerance. LPS tolerance was induced with subcutaneous administration of 1 mg/kg/day of LPS over 5 days. Macrophages were isolated from the spleen and the expression of 1200 genes was quantitatively analyzed by the macroarray technique. The tolerant group displayed relevant changes in the expression of 84 mRNA when compared to naive mice. A functional group of genes related to cell death regulation was identified. PARP-1, caspase 3, FASL and TRAIL genes were confirmed by RT-PCR to present lower expression in tolerant mice. In addition, reduced expression of the pro-inflammatory genes TNF-alpha and IFN-gamma in the tolerant group was demonstrated. Following this, animals were challenged with polymicrobial sepsis. Flow cytometry analysis showed reduced necrosis and apoptosis in macrophages from the tolerant group compared to the naive group. Finally, a survival study showed a significant reduction in mortality in the tolerant group. Thus, in the current study we provide evidence for the selective reprogramming of the gene expression of cell death pathways during LPS tolerance and link these changes to protection from cell death and enhanced survival rates. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Systemic injection of kainic acid (KA) results in characteristic behaviors and programmed cell death in some regions of the rat brain. We used KA followed by recovery at 4 degrees C to restrict damage to limbic structures and compared patterns of immediate early gene (IEG) expression and associated DNA binding activity in these damaged areas with that in spared brain regions. Male Wistar rats were injected with BA (12 mg/kg, ip) and kept at 4 degrees C for 5 h. This treatment reduced the severity of behaviors and restricted damage (observed by Nissl staining) to the CA1 and CA3 regions of the hippocampus and an area including the entorhinal cortex. DNA laddering, characteristic of apoptosis, was first evident in the hippocampus and the entorhinal cortex 18 and 22 h after RA, respectively. The pattern of IEG mRNA induction fell into three classes: IEGs that were induced in both damaged and spared areas (c-fos, fos B, jun B, and egr-1), IEGs that were induced specifically in the damaged areas (fra-2 and c-jun), and an IEG that was significantly induced by saline injection and/or the cold treatment (jun D). The pattern of immunoreactivity closely followed that of mRNA expression. Binding to the AP-1 and EGR DNA consensus sequences increased in all three regions studied. This study describes a unique modification of the animal model of ICA-induced neurotoxicity which may prove a useful tool for dissecting the molecular cascade that ultimately results in programmed cell death. (C) 1997 Academic Press.