496 resultados para Cauda epididymis
Resumo:
Previous work in our laboratory revealed that the pubertal period of reproductive development in the male rat was particularly vulnerable to gossypol exposure, with a higher frequency of round structures in the lumen of the cauda epididymidis in the treated rats. Herein, we utilized hemicastration and electron microscopy to confirm that the epididymis is a definitive target of gossypol. Although exposure to gossypol from weaning through puberty caused a significant decrease in daily sperm production, as well as in the concentration of sperm in the epididymis, serum testosterone levels and reproductive organ weights were not altered. In gossypol treated rats, sperm morphology was compromised severely, but the epithelium in testis and epididymis appeared morphologically normal. Ultrastructural examination revealed that round structures, present only in gossypol exposed males, represented: (1) principal cells exfoliated from the epididymal epithelium; (2) epididymal epithelial cell cytoplasm containing degenerating sperm; and (3) degenerating epithelial cells, consisting of vesicles and particles of different sizes, forms and densities. Taken together, the data confirm that gossypol targets the epididymis, disturbing both the structure and function of this organ, and presumably disrupts sperm maturation.
Resumo:
Sibutramine is a drug globally used for the treatment of obesity. The aim of this study was to investigate male reproductive disorders caused by sibutramine in adult rats. Wistar rats were treated for 28 consecutive days (gavage) with 10 mg/kg of sibutramine. Control animals received only vehicle (dimethylsulfoxide and saline). The rats were sacrificed for evaluation of body and reproductive organ weights, sperm parameters, hormone levels (luteinizing hormone, follicle-stimulating hormone, and testosterone), testicular and epididymal histopathology, sexual behavior, fertility and in vitro contractility of the epididymal duct. Sibutramine decreased (P < .05) weights of the epididymis and ventral prostate, but not of other reproductive organs. The sperm number and transit time in the epididymal cauda were decreased (P < .001), but the daily sperm production was not altered. Moreover, morphology and sperm motility, histopathology of the testes and epididymis, sexual behavior, fertility, and serum hormone levels were not altered by the treatment. Sibutramine increased the potency of norepinephrine and, per se, increased the mechanical activity of the epididymal duct in vitro. Thus, although sibutramine in these experimental conditions did not interfere with the reproductive process of rats, it provoked acceleration of the sperm transit time and a decrease in the sperm reserves in the epididymal cauda. This alteration is probably related to the sympathomimetic effect of this drug, as shown by the in vitro assays. In humans, use of this drug might present a threat for male fertility because sperm reserves in men are naturally lower than those in rats.
Resumo:
Gossypol, a yellow pigment found in cottonseeds, well known for its antifertility properties in animals, has been used as a contraceptive by men. The aims of this work were to evaluate the effects of gossypol throughout sexual development of male rats and to provide additional data to clarify the target site or sites of this compound in the male reproductive system, Gossypol (15 mg/kg per day) was given to animals from weaning through prepuberty (41 days), early puberty (51 days), puberty (61 days), and sexual maturity (91 days). Ventral prostate weight and fructose levels were similar in control and treated rats, suggesting that androgen levels were normal. No histological effects on the testis were detected, but there was a significant decrease in the sperm concentration in the cauda epididymidis of gossypol-treated animals killed at 61 and 91 days, as well as a significant increase in abnormal sperm in the vas deferens of treated animals. Moreover, the histology of the cauda epididymidis of the rats treated throughout puberty (ie, until days 51 and 61) showed a great number of round bodies in the lumen of the epididymis. These structures stained for the epididymis-specific protein E. Collectively, the data demonstrate that the epididymis is a target of gossypol when postweaning exposure extends throughout pubertal development, and that whereas more subtle histological effects commence around puberty, indicators reproductive competence are compromised in adulthood.
Resumo:
The concentration of total protein measured by photocolorimetric methodology and reported as units per 100 mg of tissue decreased from the initial segment to the cauda epididymidis of the Golden hamster, being significant the numeric difference observed between these two regions. This observation was related with an increased synthesis and secretion of proteins to the lumen in proximal segments of the epididymidis duct, mainly in initial segment, as proposed for other rodents. LDH activity was higher in initial segment and distal cauda than in the caput and corpus epididymidis, although no significant differences in mean values had been observed. The high LDH activity observed in initial segment and cauda epididymidis of hamster had been related to an expressive epithelium metabolic activity presented in these regions. This metabolic activity help to guarantee the survival of spermatozoa stored in cauda epididymidis. Furthermore, lower LDH activity noted in the caput and corpus epididymidis might be related with a progressive reduction of glycolysis in initial maturation step of spermatozoa mainly verified in corpus epididymidis. © 2007 Sociedad Chilena de Anatomía.
Resumo:
The recovery of sperm from the epididymal cauda may be the last chance to obtain genetic material when sudden death or serious injuries occur in valuable stallions. However, the lack of technical knowledge regarding the storage and transportation of the epididymis often prevents the preservation of the sperm. Therefore, the aim of this study was to compare sperm parameters of sperm obtained immediately after orchiectomy with sperm recovered from epididymal cauda at different times after storage at 5°C and at room temperature (RT). For that, 48 stallions of different breeds were used. In group 1 (control group), eight stallions were used, and the harvest of the epididymal sperm was performed immediately after orchiectomy. In group 2, 40 stallions were used, which were divided into five groups according to the storage time of the epididymis after orchiectomy (6, 12, 18, 24, or 30 hours), making a total of eight stallions per group. One epididymis of each stallion was stored at 5°C, and the contralateral epididymis was stored at RT, both for the same period. The sperm parameters of total motility, progressive motility, progressive linear velocity, curvilinear velocity, percentage of rapid sperm, and plasma membrane integrity were evaluated in all the groups after sperm recovery, resuspension in a sperm freezing diluent, and thawing. In conclusion, the storage of the testis-epididymis complex at 5°C provided better preservation of epididymal sperm than the storage at RT, and regardless of the temperature, the progressive motility is the sperm parameter that is most sensitive to storage time. © 2013 Elsevier Inc.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Selective chemical sympathectomy of the internal sex organs of adult male rats was undertaken by long term administration of low doses of guanethidine. The spermatogenic activity of the testis was unaffected by treatment. Examination of the vas deferens using morphometric methods revealed a marked increase in luminal area in contrast to a decrease in muscle layer area and in epithelial height. This is morphological evidence of sperm accumulation caused by a disorder in ductal contractile activity. No structural changes were observed in the epididymis. However, the concentration of spermatozoa in the sperm suspension stored in the cauda epididymidis was significantly increased in denervated rats. This result is discussed in terms of a sympathetic control of resorption mechanisms in the epididymis.
Resumo:
Aquaporins (AQPs) are essential membrane protein channels for the transport of water across membranes. Fluid movement in the epididymis is important for modulation of the luminal environment, in which sperm mature and reside. This study was designed to understand the morphology and localization of AQPs in ram efferent ducts (ED) and epididymis. For this purpose, the epididymis of seven animals were removed for histologic and immunohistochemical analyses. AQP1 immunoreactivity was observed in the apex of the ED, and AQP9 was found adjacent to the nuclei of the epithelial cells of the ED. The epithelial lining of ram epididymis is pseudostratified columnar and presents principal, basal, apical and narrow cells. In the initial segment (IS), a moderate reaction for AQP1 was observed in the apical cytoplasm of epithelial cells. An intense reactivity for AQP1 was noted over the microvilli of principal cells and in spermatozoa in the caput. In the corpus and cauda, AQP1 was noted only over the endothelial cells of vascular channels located in intertubular spaces. A weak-to-moderate reaction for AQP9 was observed in the nuclei of epithelial cells in the IS, caput and corpus of the epididymis. In the cauda, an intense reaction to AQP9 was observed in the epithelial border. In the IS, caput and corpus, the reactivity for AQP9 differed from those observed in domestic animals. The cauda showed a pattern similar to that previously described. These results indicate that AQPs 1 and 9 have reversed locations and roles in rams, suggesting activity variations related with fluid and solute absorption throughout the epididymis.
Resumo:
The aim of the present study was to compare cryopreservation, osmotic tolerance and glycerol toxicity between mature and immature epididymal kangaroo spermatozoa to investigate whether the lack of cryopreservation success of cauda epididymidal spermatozoa may be related to the increased complexity of the sperm ultrastructure acquired during epididymal transit. Caput and cauda epididymidal spermatozoa were recovered from red-necked wallabies (RNW; Macropus rufogriseus) and eastern grey kangaroos (EGK; M. giganteus). In Experiment 1, caput and cauda epididymidal spermatozoa were frozen and thawed using a standard cryopreservation procedure in Triscitrate buffer with or without 20% glycerol. Although cryopreservation of caput epididymidal spermatozoa resulted in a significant increase in sperm plasma membrane damage, they were more tolerant of the procedure than spermatozoa recovered from the cauda epididymidis (P< 0.05). In Experiment 2, caput and cauda epididymidal EGK spermatozoa were diluted into phosphate-buffered saline media of varying osmolarity and their osmotic tolerance determined. Plasma membranes of caput epididymidal spermatozoa were more tolerant of hypo-osmotic media than were cauda epididymidal spermatozoa ( P< 0.05). In Experiment 3, caput and cauda epididymidal RNW spermatozoa were incubated in Tris-citrate buffer with and without 20% glycerol at 35 and 4 degrees C to examine the cytotoxic effects of glycerol. At both temperatures, caput epididymidal spermatozoa showed less plasma membrane damage compared with cauda epididymidal spermatozoa when exposed to 20% glycerol ( P< 0.05). These experiments clearly indicate that epididymal maturation of kangaroo spermatozoa results in a decreased ability to withstand the physiological stresses associated with cryopreservation.
Resumo:
The epididymis has an important role in the maturation of sperm for fertilization, but little is known about the epididymal molecules involved in sperm modifications during this process. We have previously described the expression pattern for an antigen in epididymal epithelial cells that reacts with the monoclonal antibody (mAb) TRA 54. Immunohistochemical and immunoblotting analyses suggest that the epitope of the epididymal antigen probably involves a sugar moiety that is released into the epididymal lumen in an androgen-dependent manner and subsequently binds to luminal sperm. Using column chromatography, SDS-PAGE with in situ digestion and mass spectrometry, we have identified the protein recognized by mAb TRA 54 in mouse epididymal epithelial cells. The ∼65 kDa protein is part of a high molecular mass complex (∼260 kDa) that is also present in the sperm acrosomal vesicle and is completely released after the acrosomal reaction. The amino acid sequence of the protein corresponded to that of albumin. Immunoprecipitates with anti-albumin antibody contained the antigen recognized by mAb TRA 54, indicating that the epididymal molecule recognized by mAb TRA 54 is albumin. RT-PCR detected albumin mRNA in the epididymis and fertilization assays in vitro showed that the glycoprotein complex containing albumin was involved in the ability of sperm to recognize and penetrate the egg zona pellucida. Together, these results indicate that epididymal-derived albumin participates in the formation of a high molecular mass glycoprotein complex that has an important role in egg fertilization.
Resumo:
The ultrastructure of mature Lagorchestes hirsutus spermatozoa is described for the first time, revealing unusual aspects of sperm structure in macropodid species. The sperm head is ovoid rather than cuneiform, lacks a ventral nuclear groove and has an acrosomal distribution over approximately 85-90% of its dorsal surface. Immediately adjacent to the nuclear membrane the peripheral nucleoplasm in most spermatozoa form an irregular series of distinctive evaginations previously not described in the spermatozoa of any other marsupial. The midpiece is extremely thickened and short, containing no helical network or peripheral plasma membrane specializations. Axonemal structure is unspecialized with no connecting lamellae; dense outer fibres are closely adherent to axonemal doublets. The sperm morphology of this species is highly aberrant in comparison to other macropod taxa and supports the retention of Lagorchestes as a distinctive genus. In light of this new information, skeletal and serological data should be re-evaluated to determine the true taxonomic and phylogenetic position of this species.
Resumo:
Introdução: A incidência de síndrome da cauda equina foi quantificada em <0,23: 10 000 na anestesia obstétrica. Apesar da raridade, as suas consequências podem ser geradoras de limitações importantes na qualidade de vida das pacientes, daí a pertinência da análise deste caso clínico. Grávida de 34 anos com antecedentes de VIH2, VHC e linfoma não Hodgkin em remissão desde há 5 anos submetida a bloqueio subaracnoideu e colocação de cateter epidural para cesariana. A abordagem do espaço epidural foi difícil. Administrou-se 7,5mg de levobupivacaína e 0,0025mg sufentanil no espaço subaracnoideu e a paciente queixou-se de dor tipo choques eléctricos e parestesias nos membros inferiores durante segundos. Após 1:30h, na UCPA, a paciente iniciou o mesmo tipo de dor na região sacrococcígea e coxas após administração morfina e metilprednisolona no espaço epidural, a qual foi debelada com paracetamol, cetorolac, dipirona e petidina. A remoção do cateter epidural foi difícil. No pós-operatório a paciente sentiu tremor ao nível da coxa esquerda e parestesias na coxa direita. Pela raridade do síndrome da cauda equina, a análise do ocorrido é pertinente contrapondo com descrições prévias, em virtude duma intervenção anestésica mais segura.
Resumo:
In imaging diagnosis, redundant nerve roots of the cauda equina are characterized by the presence of elongated, enlarged and tortuous nerve roots in close relationship with a high-grade lumbar spinal canal stenosis. This is not an independent entity, but it is believed to be a consequence of the chronic compression at the level of the lumbar canal stenosis and thus may be part of the natural history of lumbar spinal stenosis. The present paper is aimed at reviewing the histopathological, electrophysiological and imaging findings, particularly at magnetic resonance imaging, as well as the clinical meaning of this entity. As the current assessment of canal stenosis and root compression is preferably performed by means of magnetic resonance imaging, this is the imaging method by which the condition is identified. The recognition of redundant nerve roots at magnetic resonance imaging is important, particularly to avoid misdiagnosing other conditions such as intradural arteriovenous malformations. The literature approaching the clinical relevance of the presence of redundant nerve roots is controversial. There are articles suggesting that the pathological changes of the nerve roots are irreversible at the moment of diagnosis and therefore neurological symptoms are less likely to improve with surgical decompression, but such concept is not a consensus.
Resumo:
In mammals, post-testicular sperm maturation taking place in the epididymis is required for the spermatozoa to acquire the abilities required to fertilize the egg in vivo. The epididymal epithelial cells secrete proteins and other small molecules into the lumen, where they interact with the spermatozoa and enable necessary maturational changes. In this study different in silico, in vitro and in vivo approaches were utilized in order to find novel genes responsible for the function of the epididymis and post-testicular sperm maturation in the mouse. Available online genomic databases were analyzed to identify genes potentially expressed in the epididymis, gene expression profiling was performed by studying their expression in different mouse tissues, and significance of certain genes to fertility was assessed by generating genetically modified mouse models. A recently discovered Pate (prostate and testis expression) gene family was found to be predominantly expressed in the epididymis. It represents one of the largest known gene families expressed in the epididymis, and the members code for proteins potentially involved in defense against microorganisms. Through genetically modified mouse models CRISP4 (cysteine-rich secretory protein 4) was identified to regulate sperm acrosome reaction, and BMYC to inhibit the expression of the Myc proto-oncogene in the developing testis. A mouse line expressing iCre recombinase specifically in the epididymis was also generated. This model can be used to generate conditional, epididymis-specific knock-out models, and will be a valuable tool in fertility studies.