993 resultados para Cauchy singular integral-equation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mathematics Subject Classification: 44A40, 45B05

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mathematics Subject Classification: 45G10, 45M99, 47H09

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider a Cauchy problem for the Laplace equation in a two-dimensional semi-infinite region with a bounded inclusion, i.e. the region is the intersection between a half-plane and the exterior of a bounded closed curve contained in the half-plane. The Cauchy data are given on the unbounded part of the boundary of the region and the aim is to construct the solution on the boundary of the inclusion. In 1989, Kozlov and Maz'ya [10] proposed an alternating iterative method for solving Cauchy problems for general strongly elliptic and formally self-adjoint systems in bounded domains. We extend their approach to our setting and in each iteration step mixed boundary value problems for the Laplace equation in the semi-infinite region are solved. Well-posedness of these mixed problems are investigated and convergence of the alternating procedure is examined. For the numerical implementation an efficient boundary integral equation method is proposed, based on the indirect variant of the boundary integral equation approach. The mixed problems are reduced to integral equations over the (bounded) boundary of the inclusion. Numerical examples are included showing the feasibility of the proposed method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose and investigate a method for the stable determination of a harmonic function from knowledge of its value and its normal derivative on a part of the boundary of the (bounded) solution domain (Cauchy problem). We reformulate the Cauchy problem as an operator equation on the boundary using the Dirichlet-to-Neumann map. To discretize the obtained operator, we modify and employ a method denoted as Classic II given in [J. Helsing, Faster convergence and higher accuracy for the Dirichlet–Neumann map, J. Comput. Phys. 228 (2009), pp. 2578–2576, Section 3], which is based on Fredholm integral equations and Nyström discretization schemes. Then, for stability reasons, to solve the discretized integral equation we use the method of smoothing projection introduced in [J. Helsing and B.T. Johansson, Fast reconstruction of harmonic functions from Cauchy data using integral equation techniques, Inverse Probl. Sci. Eng. 18 (2010), pp. 381–399, Section 7], which makes it possible to solve the discretized operator equation in a stable way with minor computational cost and high accuracy. With this approach, for sufficiently smooth Cauchy data, the normal derivative can also be accurately computed on the part of the boundary where no data is initially given.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The paper is devoted to the study of the Cauchy problem for a nonlinear differential equation of complex order with the Caputo fractional derivative. The equivalence of this problem and a nonlinear Volterra integral equation in the space of continuously differentiable functions is established. On the basis of this result, the existence and uniqueness of the solution of the considered Cauchy problem is proved. The approximate-iterative method by Dzjadyk is used to obtain the approximate solution of this problem. Two numerical examples are given.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Motivated by the work of Mateu, Orobitg, Pérez and Verdera, who proved inequalities of the form $T_*f\lesssim M(Tf)$ or $T_*f\lesssim M^2(Tf)$ for certain singular integral operators $T$, such as the Hilbert or the Beurling transforms, we study the possibility of establishing this type of control for the Cauchy transform along a Lipschitz graph. We show that this is not possible in general, and we give a partial positive result when the graph is substituted by a Jordan curve.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We introduce a robot-safety device system attended by two different repairmen. The twin system is characterized by the natural feature of cold standby and by an admissible “risky” state. In order to analyse the random behaviour of the entire system (robot, safety device, repair facility) we employ a stochastic process endowed with probability measures satisfying general Hokstad-type differential equations. The solution procedure is based on the theory of sectionally holomorphic functions, characterized by a Cauchy-type integral defined as a Cauchy principal value in double sense. An application of the Sokhotski-Plemelj formulae determines the long-run availability of the robot-safety device. Finally, we consider the particular but important case of deterministic repair.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 45A05, 45B05, 45E05,45P05, 46E30

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mathematics Subject Classification 2010: 45DB05, 45E05, 78A45.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

MSC 2010: 45DB05, 45E05, 78A45

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A numerical method for the Dirichlet initial boundary value problem for the heat equation in the exterior and unbounded region of a smooth closed simply connected 3-dimensional domain is proposed and investigated. This method is based on a combination of a Laguerre transformation with respect to the time variable and an integral equation approach in the spatial variables. Using the Laguerre transformation in time reduces the parabolic problem to a sequence of stationary elliptic problems which are solved by a boundary layer approach giving a sequence of boundary integral equations of the first kind to solve. Under the assumption that the boundary surface of the solution domain has a one-to-one mapping onto the unit sphere, these integral equations are transformed and rewritten over this sphere. The numerical discretisation and solution are obtained by a discrete projection method involving spherical harmonic functions. Numerical results are included.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We develop a new multiwave version of the range test for shape reconstruction in inverse scattering theory. The range test [R. Potthast, et al., A ‘range test’ for determining scatterers with unknown physical properties, Inverse Problems 19(3) (2003) 533–547] has originally been proposed to obtain knowledge about an unknown scatterer when the far field pattern for only one plane wave is given. Here, we extend the method to the case of multiple waves and show that the full shape of the unknown scatterer can be reconstructed. We further will clarify the relation between the range test methods, the potential method [A. Kirsch, R. Kress, On an integral equation of the first kind in inverse acoustic scattering, in: Inverse Problems (Oberwolfach, 1986), Internationale Schriftenreihe zur Numerischen Mathematik, vol. 77, Birkhäuser, Basel, 1986, pp. 93–102] and the singular sources method [R. Potthast, Point sources and multipoles in inverse scattering theory, Habilitation Thesis, Göttingen, 1999]. In particular, we propose a new version of the Kirsch–Kress method using the range test and a new approach to the singular sources method based on the range test and potential method. Numerical examples of reconstructions for all four methods are provided.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the classical combined field integral equation formulations for time-harmonic acoustic scattering by a sound soft bounded obstacle, namely the indirect formulation due to Brakhage-Werner/Leis/Panic, and the direct formulation associated with the names of Burton and Miller. We obtain lower and upper bounds on the condition numbers for these formulations, emphasising dependence on the frequency, the geometry of the scatterer, and the coupling parameter. Of independent interest we also obtain upper and lower bounds on the norms of two oscillatory integral operators, namely the classical acoustic single- and double-layer potential operators.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For a nonlocally perturbed half- space we consider the scattering of time-harmonic acoustic waves. A second kind boundary integral equation formulation is proposed for the sound-soft case, based on a standard ansatz as a combined single-and double-layer potential but replacing the usual fundamental solution of the Helmholtz equation with an appropriate half- space Green's function. Due to the unboundedness of the surface, the integral operators are noncompact. In contrast to the two-dimensional case, the integral operators are also strongly singular, due to the slow decay at infinity of the fundamental solution of the three-dimensional Helmholtz equation. In the case when the surface is sufficiently smooth ( Lyapunov) we show that the integral operators are nevertheless bounded as operators on L-2(Gamma) and on L-2(Gamma G) boolean AND BC(Gamma) and that the operators depend continuously in norm on the wave number and on G. We further show that for mild roughness, i.e., a surface G which does not differ too much from a plane, the boundary integral equation is uniquely solvable in the space L-2(Gamma) boolean AND BC(Gamma) and the scattering problem has a unique solution which satisfies a limiting absorption principle in the case of real wave number.