993 resultados para Cattle-embryo
Resumo:
Levels of rabies virus neutralization antibody in sera from vaccinated dogs and cattle were either measured by mouse neutralization test (MNT) or by rapid fluorescent focus inhibition test (RFFIT), performed on CER monolayers. The two tests were compared for their ability to detect the 0.5 International Units/ml (I.U.) recommended by the World Health Organization (WHO) as the minimum response for proof of rabies immunization. A significant correlation was found between the two tests (n = 211; r = 0.9949 in dogs and 0.9307 in cows, p < 0.001), good sensitivity (87.5%), specificity (94.7%) and agreement (96.6%) as well. RFFIT method standardized on CER cell system for neutralizing antibodies detection turns the diagnosis easier and less expensive, specially when a great number of samples must be tested from endemic areas as commonly found in Brazil. (c) 2005 the International Association for Biologicals. Published by Elsevier Ltd. All rights reserved.
Resumo:
In the past years, research in embryo technologies is moving to the establishment of preimplantation genetic typing or also denominated preimplantation genetic diagnosis (PGD). The objectives of these tests are the prevention of genetic diseases transmission and the prediction of phenotypic characteristics, as well as sex determination, genetic disorders and productive and reproductive profiles, prior to the embryo transfer or freezing, during early stages of development. This paper points out the state-of-the-art of PGD, mainly in cattle and discuss the perspectives of multiloci genetic analysis of embryos. (C) 2001 by Elsevier B.V.
Resumo:
The aim of this study was to evaluate the indirect immunoperoxidase virus neutralization (IPVN) and mouse neutralization test (MNT) to detect antibodies against rabies virus from vaccinated dogs and cattle. The IPVN was set up for the ability to measure 0.5 International Units/ml (IU) of antibody required by the World Health Organization and the Office International des Epizooties as the minimum response for proof of rabies immunization. IPVN was developed and standardized in chicken embryo related (CER) cell line when 141 dog and 110 cattle sera were applied by serial five-fold dilutions (1:5, 1:25, 1:125) as well as the positive and negative reference controls, all added in four adjacent wells, of 96-well microplates. A 50 µl amount of CVS32 strain dilution containing 50-200 TCID50/ml was mixed to each serum dilution, and after 90 min 50 µl of 3 x 10(5) cells/mlcell suspension added to each well. After five days of incubation, the monolayers were fixed and the IPVN test performed. The correlation coefficient between the MNT and IPVN performed in CER cells was r = 0.9949 for dog sera (n = 100) and r = 0.9307 for cattle sera (n = 99), as well as good specificity (94.7%), sensitivity (87.5%), and agreement (96.6%) were also obtained. IPVN technique can adequately identify vaccinated and unvaccinated animals, even from low-responding vaccinated animals, with the advantage of low cost and faster then MNT standard test.
Resumo:
Embryo transfer is a biotechnology that has been used worldwide to increase the production of offspring from female bovines. Treatments to induce multiple ovulations (superovulation) have evolved from superstimulatory protocols that depended upon detection of oestrus to treatments that synchronise follicle growth and ovulation, allowing for improved donor management and fixed-timed AI (FTAI). The protocols associated with FTAI facilitate animal handling and produce at least as many viably embryos as conventional treatment protocols that required detection of oestrus. Recent knowledge regarding LH receptors (LHR) and follicular development can be applied to improve embryo transfer protocols. In fact, improvements in the superstimulatory treatment called the 'P-36 protocol', which include hormones that stimulate LHR, indicate that adjustments related to LHR availability may increase bovine embryo yield compared with conventional protocols based on the detection of oestrus.
Resumo:
To investigate why the preferred means to produce bovine embryos in Brazil has changed from in vivo to in vitro, we compared these two approaches in the same Nelore cows (n = 30) and assessed total embryo production and pregnancy rates. Without a specific schedule, all cows were subjected to ultrasound-guided ovum pick up (OPU)/in vitro production (IVP) and MOET, with intervals ranging from 15 to 45 d between procedures, respectively. To produce in vivo embryos, cows were superovulated and embryos were recovered nonsurgically from 1 to 3 times (1.4 +/- 0.6). whereas OPU/IVP was repeated from 1 to 5 times (3.2 +/- 1.2) in each donor cow during a 12-mo interval. Embryos obtained from both methods were transferred to crossbred heifers. on average. 25.6 +/- 15.3 immature oocytes were collected per OPU attempt. The average number of embryos produced by OPU/IVP (9.4 +/- 5.3) was higher (P < 0.05) than the MOET method (6.7 +/- 3.7). However, pregnancy rates were lower (P < 0.05) following transfer of IVP (33.5%) versus in vivo-derived embryos (41.5%) embryos. Embryonic losses between Days 30 and 60 and fetal sex ratio were similar (P > 0.05) between in vivo and in vitro-derived embryos. We concluded that in Nelore cows, with an interval of 15 d between OPU procedures, it was possible to produce more embryos and pregnancies compared to conventional MOET. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Background: To investigate mechanisms of fetal-maternal cell interactions in the bovine placenta, we developed a model of transgenic enhanced Green Fluorescent Protein (t-eGFP) expressing bovine embryos produced by nuclear transfer (NT) to assess the distribution of fetal-derived products in the bovine placenta. In addition, we searched for male specific DNA in the blood of females carrying in vitro produced male embryos. Our hypothesis is that the bovine placenta is more permeable to fetal-derived products than described elsewhere. Methodology/Principal Findings: Samples of placentomes, chorion, endometrium, maternal peripheral blood leukocytes and blood plasma were collected during early gestation and processed for nested-PCR for eGFP and testis-specific Y-encoded protein (TSPY), western blotting and immunohistochemistry for eGFP detection, as well as transmission electron microscopy to verify the level of interaction between maternal and fetal cells. TSPY and eGFP DNA were present in the blood of cows carrying male pregnancies at day 60 of pregnancy. Protein and mRNA of eGFP were observed in the trophoblast and uterine tissues. In the placentomes, the protein expression was weak in the syncytial regions, but intense in neighboring cells on both sides of the fetal-maternal interface. Ultrastructurally, our samples from t-eGFP expressing NT pregnancies showed to be normal, such as the presence of interdigitating structures between fetal and maternal cells. In addition, channels-like structures were present in the trophoblast cells. Conclusions/Significance: Data suggested that there is a delivery of fetal contents to the maternal system on both systemic and local levels that involved nuclear acids and proteins. It not clear the mechanisms involved in the transfer of fetal-derived molecules to the maternal system. This delivery may occur through nonclassical protein secretion; throughout transtrophoblastic-like channels and/or by apoptotic processes previously described. In conclusion, the bovine synepitheliochorial placenta displays an intimate fetal-maternal interaction, similar to other placental types for instance human and mouse. © 2013 Pereira et al.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Manipulation of follicle development to ensure optimal oocyte quality and conception rates in cattle
Resumo:
Over the last several decades, a number of therapies have been developed that manipulate ovarian follicle growth to improve oocyte quality and conception rates in cattle. Various strategies have been proposed to improve the responses to reproductive biotechnologies following timed artificial insemination (TAI), superovulation (SOV) or ovum pickup (OPU) programmes. During TAI protocols, final follicular growth and size of the ovulatory follicle are key factors that may significantly influence oocyte quality, ovulation, the uterine environment and consequently pregnancy outcomes. Progesterone concentrations during SOV protocols influence follicular growth, oocyte quality and embryo quality; therefore, several adjustments to SOV protocols have been proposed depending on the animal category and breed. In addition, the success of in vitro embryo production is directly related to the number and quality of cumulus oocyte complexes harvested by OPU. Control of follicle development has a significant impact on the OPU outcome. This article discusses a number of key points related to the manipulation of ovarian follicular growth to maximize oocyte quality and improve conception rates following TAI and embryo transfer of in vivo-and in vitro-derived embryos in cattle.