955 resultados para Cationic lipids


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Cationic bilayers based on the inexpensive synthetic lipid dioctadecyldimethylammonium bromide (DODAB) have been useful as carriers for drug delivery, immunoadjuvants for vaccines and active antimicrobial agents. Methods: Rifampicin (RIF) or isoniazid (ISO) interacted with DODAB bilayer fragments (BF) or large vesicles (LV). Dispersions were evaluated by dynamic light-scattering for zeta-average diameter (Dz) and zeta-potential (zeta) analysis; dialysis for determination of drug entrapment efficiency; plating and CFU counting for determination of cell viability of Mycobacterium smegmatis or tuberculosis, minimal bactericidal concentration (MBC) and synergism index for DODAB/drug combinations. Results: DODAB alone killed micobacteria over a range of micromolar concentrations. RIF aggregates in water solution were solubilised by DODAB BF. RIF was incorporated in DODAB bilayers at high percentiles in contrast to the leaky behavior of ISO. Combination DODAB/RIF yielded MBCs of 2/2 and 4/0.007 mu g/mL against Mycobacterium smegmatis or Mycobacterium tuberculosis, respectively. Synergism indexes equal to 0.5 or 1.0, indicated synergism against the former and independent action, against the latter species. Conclusions: In vitro, DODAB acted effectively both as micobactericidal agent and carrier for rifampicin. The novel assemblies at reduced doses may become valuable against tuberculosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hybrid nanoparticles from cationic lipid and polymers were prepared and characterized regarding physical properties and antimicrobial activity. Carboxymethylcellulose (CMC) and polydiallyldimethylammonium chloride (PDDA) were sequentially added to cationic bilayer fragments (BF) prepared from ultrasonic dispersion in water of the synthetic and cationic lipid dioctadecyldimethylammonium bromide (DODAB). Particles thus obtained were characterized by dynamic light-scattering for determination of z-average diameter (Dz) and zeta-potential (zeta). Antimicrobial activity of the DODAB BF/CMC/PDDA particles against Pseudomonas aeruginosa or Staphylococcus aureus was determined by plating and CFU counting over a range of particle compositions. DODAB BF/CMC/PDDA particles exhibited sizes and zeta-potentials strictly dependent on DODAB, CM C, and PDDA concentrations. At 0.1 mM DODAB, 0.1 mg/mL CMC, and 0.1 mg/mL PDDA, small cationic particles with Dz = 100 nm and zeta = 30 mV were obtained. At 0.5 mM DODAB, 0.5 mg/mL CMC and 0.5 mg/mL PDDA, large cationic particles with Dz = 470 nm and zeta= 50 mV were obtained. Both particulates were highly reproducible regarding physical properties and yielded 0% of p. aeruginosa viability (10(7) CFU/mL) at 1 or 2 mu g/mL PDDA dissolved in solution or in form of particles, respectively. 99% of S. aureus cells died at 10 mu g/mL PDDA alone or in small or large DODAB BF/CMC/PDDA particles. The antimicrobial effect was dependent on the amount of positive charge on particles and independent of particle size. A high microbicide potency for PDDA over a range of nanomolar concentrations was disclosed. P. aeruginosa was more sensitive to all cationic assemblies than S. aureus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We developed cationic liposomes containing DNA through a conventional process involving steps of (i) preformation of liposomes, (ii) extrusion, (iii) drying and rehydration and (iv) DNA complexation. Owing to its high prophylactic potentiality against tuberculosis, which had already been demonstrated in preclinical assays, we introduced modifications into the conventional process towards getting a simpler and more economical process for further scale-up. Elimination of the extrusion step, increasing the lipid concentration (from 16 to 64 mM) of the preformed liposomes and using good manufacturing practice bulk lipids (96-98% purity) instead of analytical grade purity lipids (99.9-100%) were the modifications studied. The differences in the physico-chemical properties, such as average diameter, zeta potential, melting point and morphology of the liposomes prepared through the modified process, were not as significant for the biological properties, such as DNA loading on the cationic liposomes, and effective immune response in mice after immunisation as the control liposomes prepared through the conventional process. Beneficially, the modified process increased productivity by 22% and reduced the cost of raw material by 75%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Liposomes have been an excellent option as drug delivery systems, since they are able of incorporating lipophobic and/or lipophilic drugs, reduce drug side effects, increase drug targeting, and control delivery. Also, in the last years, their use reached the field of gene therapy, as non-viral vectors for DNA delivery. As a strategy to increase system stability, the use of polymerizable phospholipids has been proposed in liposomal formulations. In this work, through differential scanning calorimetry (DSC) and electron spin resonance (ESR) of spin labels incorporated into the bilayers, we structurally characterize liposomes formed by a mixture of the polymerizable lipid diacetylenic phosphatidylcholine 1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphocholine (DC8,9PC) and the zwitterionic lipid 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), in a 1:1 molar ratio. It is shown here that the polymerization efficiency of the mixture (c.a. 60%) is much higher than that of pure DC8,9PC bilayers (c.a. 20%). Cationic amphiphiles (CA) were added, in a final molar ratio of 1:1:0.2 (DC8,9PC:DMPC:CA), to make the liposomes possible carriers for genetic material, due to their electrostatic interaction with negatively charged DNA. Three amphiphiles were tested, 1,2-dioleoyl-3-trimetylammonium-propane (DOTAP), stearylamine (SA) and trimetyl (2-miristoyloxietyl) ammonium chloride (MCL), and the systems were studied before and after UV irradiation. Interestingly, the presence of the cationic amphiphiles increased liposomes polymerization. MCL displaying the strongest effect. Considering the different structural effects the three cationic amphiphiles cause in DC8,9PC bilayers, there seem to be a correlation between the degree of DC8,9PC polymerization and the packing of the membrane at the temperature it is irradiated (gel phase). Moreover, at higher temperatures, in the bilayer fluid phase, more polymerized membranes are significantly more rigid. Considering that the structure and stability of liposomes at different temperatures can be crucial for DNA binding and delivery, we expect the study presented here contributes to the production of new carrier systems with potential applications in gene therapy. (C) 2012 Elsevier Ireland Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Effective gene therapy for lung tissue requires the use of efficient vehicles to deliver the gene of interest into lung cells. When plasmid DNA encoding chloramphenicol acetyltransferase (CAT) was administered intranasally to BALB/c mice without carrier lipids, CAT activity was detected in mouse lung extracts. Plasmid DNA delivered with optimally formulated commercially available transfection reagents expressed up to 10-fold more CAT activity in lung than observed with naked DNA alone. Liposome formulations consisting of (+/-)-N-(3-aminopropyl)-N,N-dimethyl-2,3-bis (dodecyloxy)-1-propanaminium bromide (GAP-DLRIE) plus the neutral colipid dioleoylphosphatidylethanolamine (DOPE) enhanced CAT expression by more than 100-fold relative to plasmid DNA alone. A single administration of GAP-DLRIE liposome-CAT DNA complexes to mouse lung elicited peak expression at days 1-4 posttransfection, followed by a gradual return to baseline by day 21 postadministration. Readministration of GAP-DLRIE liposome CAT complexes at day 21 led to another transient peak of reporter gene expression. Histological examination of lungs treated with GAP-DLRIE complexed beta-galactosidase DNA revealed that alveolar epithelial cells were the primary locus of expression and that up to 1% of all alveoli contained epithelial cells expressing the transgene.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Adjuvants are often composed of different constituents that can be divided into two groups based on their primary activity: the delivery system which carries and presents the vaccine antigen to antigen-presenting cells, and the immunostimulator that activates and modulates the ensuing immune response. Herein, we have investigated the importance of the delivery system and in particular its physical characteristics by comparing the delivery properties of two lipids which differ only in the degree of saturation of the acyl chains, rendering the liposomes either rigid (DDA, dimethyldioctadecylammonium) or highly fluid (DODA, dimethyldioleoylammonium) at physiological temperature. We show that these delivery systems are remarkably different in their ability to prime a Th1-directed immune response with the rigid DDA-based liposomes inducing a response more than 100 times higher compared to that obtained with the fluid DODA-based liposomes. Upon injection with a vaccine antigen, DDA-based liposomes form a vaccine depot that results in a continuous attraction of antigen-presenting cells that engulf a high amount of adjuvant and are subsequently efficiently activated as measured by an elevated expression of the co-stimulatory molecules CD40 and CD86. In contrast, the fluid DODA-based liposomes are more rapidly removed from the site of injection resulting in a lower up-regulation of co-stimulatory CD40 and CD86 molecules on adjuvant-positive antigen-presenting cells. Additionally, the vaccine antigen is readily dissociated from the DODA-based liposomes leading to a population of antigen-presenting cells that are antigen-positive but adjuvant-negative and consequently are not activated. These studies demonstrate the importance of studying in vivo characteristics of the vaccine components and furthermore show that physicochemical properties of the delivery system have a major impact on the vaccine-induced immune response. © 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cationic liposomes of dimethyldioctadecylammonium bromide (DDA) incorporating the glycolipid trehalose 6,6-dibehenate (TDB) forms a promising liposomal vaccine adjuvant. To be exploited as effective subunit vaccine delivery systems, the physicochemical characteristics of liposomes were studied in detail and correlated with their effectiveness in vivo, in an attempt to elucidate key aspects controlling their efficacy. This research took the previously optimised DDA-TDB system as a foundation for a range of formulations incorporating additional lipids of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) or 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), by incrementally replacing the cationic content within DDA-TDB or reducing the total DDA-TDB dose upon its substitution, to ascertain the role of DDA and the effect of DDA-TDB concentration in influencing the resultant immunological performance upon delivery of the novel subunit TB vaccine, Ag85B–ESAT-6-Rv2660c (H56 vaccine). With the aim of using the DPPC based systems for pulmonary vaccine delivery and the DSPC systems for application via the intramuscular route, initial work focused on physicochemical characterisation of the systems with incorporation of DPPC or DSPC displaying comparable physical stability, morphological structure and levels of antigen retention to that of DDA-TDB. Thermodynamic analysis was also conducted to detect main phase transition temperatures and subsequent in vitro cell culture studies demonstrated a favourable reduction in cytotoxicity, stimulation of phagocytic activity and macrophage activation in response to the proposed liposomal immunoadjuvants. Immunisation of mice with H56 vaccine via the proposed liposomal adjuvants showed that DDA was an important factor in mediating resultant immune responses, with partial replacement or substitution of DDA-TDB stimulating Th1 type cellular immunity characterised by elevated levels of IgG2b antibodies and IFN-? and IL-2 cytokines, essential for providing protective efficacy against TB. Upon increased DSPC content within the formulation, either by DDA replacement or reduction of DDA and TDB, responses were skewed towards Th2 type immunity with reduced IgG2b antibody levels and elevated IL-5 and IL-10 cytokine production, as resultant immunological responses were independent of liposomal zeta potential. The role of the cationic DDA lipid and the effect of DDA-TDB concentration were appreciated as the proposed liposomal formulations elicited antigen specific antibody and cellular immune responses, demonstrating the potential of cationic liposomes to be utilised as adjuvants for subunit vaccine delivery. Furthermore, the promising capability of the novel H56 vaccine candidate in eliciting protection against TB was apparent in a mouse model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The raft hypothesis proposes that microdomains enriched in sphingolipids, cholesterol, and specific proteins are transiently formed to accomplish important cellular tasks. Equivocally, detergent-resistant membranes were initially assumed to be identical to membrane rafts, because of similarities between their compositions. In fact, the impact of detergents in membrane organization is still controversial. Here, we use phase contrast and fluorescence microscopy to observe giant unilamellar vesicles (GUVs) made of erythrocyte membrane lipids (erythro-GUVs) when exposed to the detergent Triton X-100 (TX-100). We clearly show that TX-100 has a restructuring action on biomembranes. Contact with TX-100 readily induces domain formation on the previously homogeneous membrane of erythro-GUVs at physiological and room temperatures. The shape and dynamics of the formed domains point to liquid-ordered/liquid-disordered (Lo/Ld) phase separation, typically found in raft-like ternary lipid mixtures. The Ld domains are then separated from the original vesicle and completely solubilized by TX-100. The insoluble vesicle left, in the Lo phase, represents around 2/3 of the original vesicle surface at room temperature and decreases to almost 1/2 at physiological temperature. This chain of events could be entirely reproduced with biomimetic GUVs of a simple ternary lipid mixture, 2:1:2 POPC/SM/chol (phosphatidylcholine/sphyngomyelin/cholesterol), showing that this behavior will arise because of fundamental physicochemical properties of simple lipid mixtures. This work provides direct visualization of TX-100-induced domain formation followed by selective (Ld phase) solubilization in a model system with a complex biological lipid composition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wormlike micelles formed by the addition to cetyltrimethylammonium bromide (CTAB) of a range of aromatic cosolutes with small molecular variations in their structure were systematically studied. Phenol and derivatives of benzoate and cinnamate were used, and the resulting mixtures were studied by oscillatory, steady-shear rheology, and the microstructure was probed by small-angle neutron scattering. The lengthening of the micelles and their entanglement result in remarkable viscoelastic properties, making rheology a useful tool to assess the effect of structural variations of the cosolutes on wormlike micelle formation. For a fixed concentration of CTAB and cosolute (200 mmol L(-1)), the relaxation time decreases in the following order: phenol > cinnamate> o-hydroxycinnamate > salicylate > o-methoxycinnamate > benzoate > o-methoxybenzoate. The variations in viscoelastic response are rationalized by using Mulliken population analysis to map out the electronic density of the cosolutes and quantify the barrier to rotation of specific groups on the aromatics. We find that the ability of the group attached to the aromatic ring to rotate is crucial in determining the packing of the cosolute at the micellar interface and thus critically impacts the micellar growth and, in turn, the rheological response. These results enable us for the first time to propose design rules for the self-assembly of the surfactants and cosolutes resulting in the formation of wormlike micelles with the cationic surfactant CTAB.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the present work was to produce a cationic solid lipid nanoparticle (SLN) as non-viral vector for protein delivery. Cationic SLN were produced by double emulsion method, composed of softisan(®) 100, cetyltrimethylammonium bromide (CTAB), Tween(®) 80, Span(®) 80, glycerol and lipoid(®) S75 loading insulin as model protein. The formulation was characterized in terms of mean hydrodynamic diameter (z-ave), polydispersity index (PI), zeta potential (ZP), stability during storage time, stability after lyophilization, effect of toxicity and transfection ability in HeLa cells, in vitro release profile and morphology. SLN were stable for 30days and showed minimal changes in their physicochemical properties after lyophilization. The particles exhibited a relatively slow release, spherical morphology and were able to transfect HeLa cells, but toxicity remained an obstacle. Results suggest that SLN are nevertheless promising for delivery of proteins or nucleic acids for gene therapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work presents a study of the association between low molecular weight hyaluronic acid (16 kDa HA) and cationic liposomes composed of egg phosphatidylcholine (EPC), 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), and 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP). The cationic liposome/HA complexes were evaluated to determine their mesoscopic structure, average size, zeta potential, and morphology as a function of the amount of HA in the system. Small angle X-ray scattering results revealed that neighboring cationic liposomes either stick together after a partial coating of low concentration HA or disperse completely in excess of HA, but they never assemble as multilamellar vesicles. Cryo-transmission electron microscopy images confirm the existence of unilamellar vesicles and large aggregates of unilamellar vesicles for HA fractions up to 80% (w/w). High concentrations of HA (> 20% w/w) proved to be efficient for coating extruded liposomes, leading to particle complexes with sizes in the nanoscale range and a negative zeta potential.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Considering the importance of water content for the conservation and storage of seeds, and the involvement of soluble carbohydrates and lipids for embryo development, a comparative study was carried out among the seeds of Inga vera (ingá), Eugenia uniflora (pitanga), both classified as recalcitrant, and Caesalpinia echinata (brazilwood) and Erythrina speciosa (mulungu), considered as orthodox seeds. Low concentrations of cyclitols (0.3-0.5%), raffinose family oligosaccharides (ca. 0.05%) and unsaturated fatty acids (0-19%) were found in the seeds of ingá and pitanga, while larger amounts of cyclitols (2-3%) and raffinose (4.6-13%) were found in brazilwood and mulungu, respectively. These results, in addition to higher proportions of unsaturated fatty acids (53-71%) in orthodox seeds, suggested that sugars and lipids played important role in water movement, protecting the embryo cell membranes against injuries during dehydration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The greatest challenges in vaccine development include optimization of DNA vaccines for use in humans, creation of effective single-dose vaccines, development of delivery systems that do not involve live viruses, and the identification of effective new adjuvants. Herein, we describe a novel, simple technique for efficiently vaccinating mice against tuberculosis (TB). Our technique consists of a single-dose, genetic vaccine formulation of DNA-hsp65 complexed with cationic liposomes and administered intranasally. Results: We developed a novel and non-toxic formulation of cationic liposomes, in which the DNA-hsp65 vaccine was entrapped (ENTR-hsp65) or complexed (COMP-hsp65), and used to immunize mice by intramuscular or intranasal routes. Although both liposome formulations induced a typical Th1 pattern of immune response, the intramuscular route of delivery did not reduce the number of bacilli. However, a single intranasal immunization with COMP-hsp65, carrying as few as 25 mu g of plasmid DNA, leads to a remarkable reduction of the amount of bacilli in lungs. These effects were accompanied by increasing levels of IFN-gamma and lung parenchyma preservation, results similar to those found in mice vaccinated intramuscularly four times with naked DNA-hsp65 (total of 400 mu g). Conclusion: Our objective was to overcome the significant obstacles currently facing DNA vaccine development. Our results in the mouse TB model showed that a single intranasal dose of COMP-hsp65 elicited a cellular immune response that was as strong as that induced by four intramuscular doses of naked-DNA. This formulation allowed a 16-fold reduction in the amount of DNA administered. Moreover, we demonstrated that this vaccine is safe, biocompatible, stable, and easily manufactured at a low cost. We believe that this strategy can be applied to human vaccines to TB in a single dose or in prime-boost protocols, leading to a tremendous impact on the control of this infectious disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

While a queen control pheromone complex that inhibits worker ovary development has been described for honey bees, no comparable control pheromones have been identified for their sister group, the stingless bees. The aim of the present work was to search for possible control pheromones in the stingless bee Friesella schrottkyi. No volatile substances were found in the heads of queens that might serve as queen control pheromones. On the other hand, distinct differences were found between the cuticular substances of queens and workers. The major hydrocarbons were different between the two castes, and while queens contained methyl-branched alkanes and no unsaturated hydrocarbons, workers contained alkenes and alka-dienes but no methyl branched hydrocarbons. Colonies deprived of a queen produced laying workers. Differences were observed in the cuticular patterns of laying workers and workers from a queen controlled colony.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Silica particles cationized by dioctadecyldimethylammonium bromide (DODAB) bilayer were previously described. This work shows the efficiency of these particulates for antigen adsorption and presentation to the immune system and proves the concept that silica-based cationic bilayers exhibit better performance than alum regarding colloid stability and cellular immune responses for vaccine design. Results: Firstly, the silica/DODAB assembly was characterized at 1 mM NaCl, pH 6.3 or 5 mM Tris. HCl, pH 7.4 and 0.1 mg/ml silica over a range of DODAB concentrations (0.001-1 mM) by means of dynamic light scattering for particle sizing and zeta-potential analysis. 0.05 mM DODAB is enough to produce cationic bilayer-covered particles with good colloid stability. Secondly, conditions for maximal adsorption of bovine serum albumin (BSA) or a recombinant, heat-shock protein from Mycobacterium leprae (18 kDa-hsp) onto DODAB-covered or onto bare silica were determined. At maximal antigen adsorption, cellular immune responses in vivo from delayed-type hypersensitivity reactions determined by foot-pad swelling tests (DTH) and cytokines analysis evidenced the superior performance of the silica/DODAB adjuvant as compared to alum or antigens alone whereas humoral response from IgG in serum was equal to the one elicited by alum as adjuvant. Conclusion: Cationized silica is a biocompatible, inexpensive, easily prepared and possibly general immunoadjuvant for antigen presentation which displays higher colloid stability than alum, better performance regarding cellular immune responses and employs very low, micromolar doses of cationic and toxic synthetic lipid.