961 resultados para Catheter-related bacteremia
Resumo:
La bacteriemia asociada a catéter afecta a pacientes en las unidades de cuidado intensivo con una alta morbilidad, mortalidad y aumento de los costos al sistema de salud. Los recién nacidos son la población de más alto riesgo por el mayor uso de catéteres centrales. Objetivo: Caracterizar factores de riesgo para bacteriemia asociada a catéter en la Unidad de Cuidado Intensivo Neonatal de la Fundación Cardioinfantil entre 2005 - 2010 Materiales y método: Estudio descriptivo de corte transversal, incluyó todos los recién nacidos con diagnostico de bacteriemia asociada a catéter. Se analizó la información utilizando frecuencias y medidas de tendencia central. Resultados: Se encontraron 50 pacientes con diagnostico de bacteriemia asociada a catéter. 50% de género masculino, 52% con edad gestacional al nacimiento menor a 36 semanas y 24% con peso menor a 1500 gramos al momento de la inserción del catéter. La edad fue de 24.2 días al momento de la inserción del catéter. En el 66% de los pacientes el sitio de inserción fue el miembro superior, siendo el Sthaphylococcus Epidermidis el germen con el 50% de las bacteriemias. Conclusión: La bacteriemia asociada a catéter afecta paciente prematuros, de bajo peso sin diferencias en genero. La manipulación de dichos dispositivos, el sitio de inserción, el uso previo de antibióticos, la duración del catéter y el uso de nutrición parenteral son factores que están asociados al mayor riesgo de infección. Siendo el Staphylococcus Epidermidis el germen mas frecuente.
Resumo:
Background: A bundled approach to central venous catheter care is currently being promoted as an effective way of preventing catheter-related bloodstream infection (CR-BSI). Consumables used in the bundled approach are relatively inexpensive which may lead to the conclusion that the bundle is cost-effective. However, this fails to consider the nontrivial costs of the monitoring and education activities required to implement the bundle, or that alternative strategies are available to prevent CR-BSI. We evaluated the cost-effectiveness of a bundle to prevent CR-BSI in Australian intensive care patients. ---------- Methods and Findings: A Markov decision model was used to evaluate the cost-effectiveness of the bundle relative to remaining with current practice (a non-bundled approach to catheter care and uncoated catheters), or use of antimicrobial catheters. We assumed the bundle reduced relative risk of CR-BSI to 0.34. Given uncertainty about the cost of the bundle, threshold analyses were used to determine the maximum cost at which the bundle remained cost-effective relative to the other approaches to infection control. Sensitivity analyses explored how this threshold alters under different assumptions about the economic value placed on bed-days and health benefits gained by preventing infection. If clinicians are prepared to use antimicrobial catheters, the bundle is cost-effective if national 18-month implementation costs are below $1.1 million. If antimicrobial catheters are not an option the bundle must cost less than $4.3 million. If decision makers are only interested in obtaining cash-savings for the unit, and place no economic value on either the bed-days or the health benefits gained through preventing infection, these cost thresholds are reduced by two-thirds.---------- Conclusions: A catheter care bundle has the potential to be cost-effective in the Australian intensive care setting. Rather than anticipating cash-savings from this intervention, decision makers must be prepared to invest resources in infection control to see efficiency improvements.
Resumo:
La infección asociada a inserción de catéter vascular, es un problema cotidiano en las UCI a nivel mundial, a pesar del manejo de protocolos que se han implementado de manera independiente en las distintas instituciones para frenar este fenómeno. El estudio, de tipo observacional, analítico y cohorte concurrente, con 151 pacientes, a los cuales se insertó catéter en la UCI de la Clínica San Pedro Claver.Para el análisis se realizó estadística descriptiva, análisis de sobrevida, pruebas de asociación y regresión de Cox.
Resumo:
Introducción: La utilización de catéteres venosos centrales (CVC) en la unidad de cuidado intensivo tiene gran importancia y amplio uso, son fuente de apoyo para la realización de varia actividades, pero con un gran potencial de complicaciones, por lo cual es fundamental conocer todos los aspectos relacionados con su uso, para así poder controlarlas. Métodos: Realizamos un estudio descriptivo de corte transversal con el objetivo de caracterizar los pacientes que requirieron CVC en el Hospital Universitario Fundación Santa Fe de Bogotá durante junio de 2011 y mayo de 2013, describimos sus complicaciones asociadas tanto mecánicas como infecciosas, determinamos la tasa de bacteriemia, gérmenes causales y sus patrones de resistencia. Resultados: Se colocaron 2.286 CVC, el 52,9% en hombres, la media de edad fue 58,9 años. El total de las complicaciones ascienden al 4,5%, infecciosas 4,0% y mecánicas 0,6%. Dentro de las mecánicas solo encontramos inmediatas, no tardías. Con respecto a las infecciosas encontramos infección del sitio de inserción y bacteriemia. Se documentó una tasa de bacteriemia de 3,4 por 1000-días catéter en 2013, en disminución con respecto a 2012 (3,9) y 2011 (4,4). El microorganismo mas frecuentemente aislado fue el Staphylococcus Coagulasa Negativo con patrón usual de resistencia. Conclusión: Las complicaciones asociadas al uso de CVC en el HUFSFB, se presentan en menor frecuencia a las descritas internacionalmente; la tasa de bacteriemia asociada al CVC ha disminuido año tras año, posiblemente asociado al cuidado mas estricto posterior a la implementación de protocolos de manejo.
Resumo:
Cateteres venosos centrais inseridos em pacientes internados em unidade de terapia intensiva foram avaliados por métodos microbiológicos (cultura semi-quantitativa) e microscopia eletrônica de varredura a fim de detectar adesão microbiana e correlacionar com a cultura de sangue. Durante o período de estudo, foram avaliados 59 pacientes com cateter venoso central. A idade dos pacientes, sexo, sítio de inserção e tempo de permanência do cateter foram anotados. O cateter era de poliuretano não tunelizado e de único lúmen. O sangue para cultura foi coletado no momento da remoção do cateter. de 63 pontas de cateteres, 30 (47,6%) foram colonizadas e a infecção encontrada em 5 (23,8%) cateteres. A infecção foi mais prevalente em 26 pacientes (41,3%) com cateteres inseridos em veia subclávia do que nos 3 (3,2%) inseridos em veia jugular. A infecção foi observada com mais freqüência em cateteres com tempo de permanência maior do que sete dias. Os microrganismos isolados incluíram 32 estafilococos coagulase-negativa (29,7%), 61 bactérias Gram-negativas (52,9%), 9 estafilcocos coagulase-positiva (8,3%) e 3 leveduras (2,7%). Como agentes causais de infecções em unidade de terapia intensiva foram isolados E. aerogenes, P. aeruginosa, A. baumannii. Os antimicrobianos com maior atividade in vitro contra as bactérias Gram-negativas foram o imipenem e contra as Gram-positivas vancomicina, cefepime, penicilina, rifampicina e tetraciclina. As análises por microscopia eletrônica de varredura revelaram biofilmes sobre a superfície de todos os cateteres examinados.
Resumo:
Objective: To determine the number of colony-forming units (CFU) that best correlates with catheter-related infections (CRI) in newborns.Methods: This was a prospective study of semiquantitative cultures of catheter tips obtained from newborns in the neonatal unit at Faculdade de Medicina de Botucatu, state of São Paulo, Brazil. The microorganisms isolated from catheter and peripheral blood cultures were identified and submitted to a drug susceptibility test. The optimal cutoff point was determined by the receiver operating characteristic (ROC) curve.Results: A total of 85 catheters obtained from 63 newborns were studied. Staphylococcus epidermidis was the predominant species in the catheters (75%). Eight of 11 (72.7%) CRI episodes were associated with coagulase-negative staphylococci, six of which were of the S. epidermidis type. ROC curve analysis indicated that the optimal cutoff point for the diagnosis of CRI was 122 CFU.Conclusions: The cutoff point of 122 CFU correlated best with the diagnosis of CRI in newborns.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
A good catheter implantation technique is important to allow effective peritoneal access function and long-term technique survival. Studies regarding results obtained by nephrologists in comparison with different techniques have been limited. The aim of this study was to investigate the rate of early catheter-related complications and catheter survival in two Brazilian centers, according to two different percutaneous methods of catheter implantation performed by nephrologist team. Adult incident patients recruited from January 2006 to July 2013 having undergone first peritoneal dialysis (PD) catheter implantation were included in the analysis. Mechanical and infectious early complication rates were defined as time to the first event occurring up to 3 months. Four hundred and forty-five consecutive Tenckhoff catheters were implanted by nephrologist team percutaneously after antibiotic prophylaxis in an operating room: trocar was used in 349 (78.4 %) and Seldinger technique (ST) in 99 (21.6 %). The ST was significantly associated with a lower rate of leak (16.3 vs 3 %, p = 0.03) and outflow failure due to tip catheter migration (22.6 vs 10.1 %, p = 0.04), while early infectious complication rates were similar between the two groups (p = 0.59). Long-term catheter survival was higher in Seldinger group (log-rank, p = 0.031). By Cox multivariate analysis, adjusted for age, sex, and diabetes, the ST remained independently associated with better catheter survival [HR 0.681 (0.462-0.910), p = 0.04]. As conclusion, our experience showed better PD outcomes with the ST than trocar method of catheter implantation by nephrologist.
Resumo:
Background. Health care associated catheter related blood stream infections (CRBSI) represent a significant public health concern in the United States. Several studies have suggested that precautions such as maximum sterile barrier and use of antimicrobial catheters are efficacious at reducing CRBSI, but there is concern within the medical community that the prolonged use of antimicrobial catheters may be associated with increased bacterial resistance. Clinical studies have been done showing no association and a significant decrease in microbial resistance with prolonged minocycline/rifampin (M/R) catheter use. One explanation is the emergence of community acquired methicillin resistant Staphylococcus aureus (MRSA), which is more susceptible to antibiotics, as a cause of CRBSI.^ Methods. Data from 323 MRSA isolates cultured from cancer patients at The University of Texas MD Anderson Cancer center from 1997-2007 displaying MRSA infection were analyzed to determine whether there is a relationship between resistance to minocycline and rifampin and prolonged wide spread use of minocycline (M/R) catheters. Analysis was also conducted to determine whether there was a significant change in the prevalence community acquired MRSA (CA-MRSA) during this time period and if this emergence act as a confounder masquerading the true relationship between microbial resistance and prolonged M/R catheter use.^ Results. Our study showed that the significant (p=0.008) change in strain type over time is a confounding variable; the adjusted model showed a significant protective effect (OR 0.000281, 95% CI 1.4x10 -4-5.5x10-4) in the relationship between MRSA resistance to minocycline and prolonged M/R catheter use. The relationship between resistance to rifampin and prolonged M/R catheter use was not significant.^ Conclusion. The emergence of CA-MRSA is a confounder and in the relationship between resistance to minocycline and rifampin and prolonged M/R catheter use. However, despite the adjustment for the more susceptible CA-MRSA the widespread use of M/R catheters does not promote microbial resistance. ^
Resumo:
2000 Mathematics Subject Classification: 62J12, 62P10.
Resumo:
Introduction: Some types of antimicrobial-coated central venous catheters (A-CVC) have been shown to be cost-effective in preventing catheter-related bloodstream infection (CR-BSI). However, not all types have been evaluated, and there are concerns over the quality and usefulness of these earlier studies. There is uncertainty amongst clinicians over which, if any, antimicrobial-coated central venous catheters to use. We re-evaluated the cost-effectiveness of all commercially available antimicrobialcoated central venous catheters for prevention of catheter-related bloodstream infection in adult intensive care unit (ICU) patients. Methods: We used a Markov decision model to compare the cost-effectiveness of antimicrobial-coated central venous catheters relative to uncoated catheters. Four catheter types were evaluated; minocycline and rifampicin (MR)-coated catheters; silver, platinum and carbon (SPC)-impregnated catheters; and two chlorhexidine and silver sulfadiazine-coated catheters, one coated on the external surface (CH/SSD (ext)) and the other coated on both surfaces (CH/SSD (int/ext)). The incremental cost per qualityadjusted life-year gained and the expected net monetary benefits were estimated for each. Uncertainty arising from data estimates, data quality and heterogeneity was explored in sensitivity analyses. Results: The baseline analysis, with no consideration of uncertainty, indicated all four types of antimicrobial-coated central venous catheters were cost-saving relative to uncoated catheters. Minocycline and rifampicin-coated catheters prevented 15 infections per 1,000 catheters and generated the greatest health benefits, 1.6 quality-adjusted life-years, and cost-savings, AUD $130,289. After considering uncertainty in the current evidence, the minocycline and rifampicin-coated catheters returned the highest incremental monetary net benefits of $948 per catheter; but there was a 62% probability of error in this conclusion. Although the minocycline and rifampicin-coated catheters had the highest monetary net benefits across multiple scenarios, the decision was always associated with high uncertainty. Conclusions: Current evidence suggests that the cost-effectiveness of using antimicrobial-coated central venous catheters within the ICU is highly uncertain. Policies to prevent catheter-related bloodstream infection amongst ICU patients should consider the cost-effectiveness of competing interventions in the light of this uncertainty. Decision makers would do well to consider the current gaps in knowledge and the complexity of producing good quality evidence in this area.
Resumo:
Background: Reducing rates of healthcare acquired infection has been identified by the Australian Commission on Safety and Quality in Health Care as a national priority. One of the goals is the prevention of central venous catheter-related bloodstream infection (CR-BSI). At least 3,500 cases of CR-BSI occur annually in Australian hospitals, resulting in unnecessary deaths and costs to the healthcare system between $25.7 and $95.3 million. Two approaches to preventing these infections have been proposed: use of antimicrobial catheters (A-CVCs); or a catheter care and management ‘bundle’. Given finite healthcare budgets, decisions about the optimal infection control policy require consideration of the effectiveness and value for money of each approach. Objectives: The aim of this research is to use a rational economic framework to inform efficient infection control policy relating to the prevention of CR-BSI in the intensive care unit. It addresses three questions relating to decision-making in this area: 1. Is additional investment in activities aimed at preventing CR-BSI an efficient use of healthcare resources? 2. What is the optimal infection control strategy from amongst the two major approaches that have been proposed to prevent CR-BSI? 3. What uncertainty is there in this decision and can a research agenda to improve decision-making in this area be identified? Methods: A decision analytic model-based economic evaluation was undertaken to identify an efficient approach to preventing CR-BSI in Queensland Health intensive care units. A Markov model was developed in conjunction with a panel of clinical experts which described the epidemiology and prognosis of CR-BSI. The model was parameterised using data systematically identified from the published literature and extracted from routine databases. The quality of data used in the model and its validity to clinical experts and sensitivity to modelling assumptions was assessed. Two separate economic evaluations were conducted. The first evaluation compared all commercially available A-CVCs alongside uncoated catheters to identify which was cost-effective for routine use. The uncertainty in this decision was estimated along with the value of collecting further information to inform the decision. The second evaluation compared the use of A-CVCs to a catheter care bundle. We were unable to estimate the cost of the bundle because it is unclear what the full resource requirements are for its implementation, and what the value of these would be in an Australian context. As such we undertook a threshold analysis to identify the cost and effectiveness thresholds at which a hypothetical bundle would dominate the use of A-CVCs under various clinical scenarios. Results: In the first evaluation of A-CVCs, the findings from the baseline analysis, in which uncertainty is not considered, show that the use of any of the four A-CVCs will result in health gains accompanied by cost-savings. The MR catheters dominate the baseline analysis generating 1.64 QALYs and cost-savings of $130,289 per 1.000 catheters. With uncertainty, and based on current information, the MR catheters remain the optimal decision and return the highest average net monetary benefits ($948 per catheter) relative to all other catheter types. This conclusion was robust to all scenarios tested, however, the probability of error in this conclusion is high, 62% in the baseline scenario. Using a value of $40,000 per QALY, the expected value of perfect information associated with this decision is $7.3 million. An analysis of the expected value of perfect information for individual parameters suggests that it may be worthwhile for future research to focus on providing better estimates of the mortality attributable to CR-BSI and the effectiveness of both SPC and CH/SSD (int/ext) catheters. In the second evaluation of the catheter care bundle relative to A-CVCs, the results which do not consider uncertainty indicate that a bundle must achieve a relative risk of CR-BSI of at least 0.45 to be cost-effective relative to MR catheters. If the bundle can reduce rates of infection from 2.5% to effectively zero, it is cost-effective relative to MR catheters if national implementation costs are less than $2.6 million ($56,610 per ICU). If the bundle can achieve a relative risk of 0.34 (comparable to that reported in the literature) it is cost-effective, relative to MR catheters, if costs over an 18 month period are below $613,795 nationally ($13,343 per ICU). Once uncertainty in the decision is considered, the cost threshold for the bundle increases to $2.2 million. Therefore, if each of the 46 Level III ICUs could implement an 18 month catheter care bundle for less than $47,826 each, this approach would be cost effective relative to A-CVCs. However, the uncertainty is substantial and the probability of error in concluding that the bundle is the cost-effective approach at a cost of $2.2 million is 89%. Conclusions: This work highlights that infection control to prevent CR-BSI is an efficient use of healthcare resources in the Australian context. If there is no further investment in infection control, an opportunity cost is incurred, which is the potential for a more efficient healthcare system. Minocycline/rifampicin catheters are the optimal choice of antimicrobial catheter for routine use in Australian Level III ICUs, however, if a catheter care bundle implemented in Australia was as effective as those used in the large studies in the United States it would be preferred over the catheters if it was able to be implemented for less than $47,826 per Level III ICU. Uncertainty is very high in this decision and arises from multiple sources. There are likely greater costs to this uncertainty for A-CVCs, which may carry hidden costs, than there are for a catheter care bundle, which is more likely to provide indirect benefits to clinical practice and patient safety. Research into the mortality attributable to CR-BSI, the effectiveness of SPC and CH/SSD (int/ext) catheters and the cost and effectiveness of a catheter care bundle in Australia should be prioritised to reduce uncertainty in this decision. This thesis provides the economic evidence to inform one area of infection control, but there are many other infection control decisions for which information about the cost-effectiveness of competing interventions does not exist. This work highlights some of the challenges and benefits to generating and using economic evidence for infection control decision-making and provides support for commissioning more research into the cost-effectiveness of infection control.
Resumo:
Background: Greater research utilisation in cancer nursing practice is needed, in order to provide well-informed and effective nursing care to people affected by cancer. This paper aims to report on the implementation of evidence-based practice in a tertiary cancer centre. Methods: Using a case report design, this paper reports on the use of the Collaborative Model for Evidence Based Practice (CMEBP) in an Australian tertiary cancer centre. The clinical case is the uptake of routine application of chlorhexidine-impregnated sponge dressings for preventing centrally inserted catheter-related bloodstream infections. In this case report, a number of processes that resulted in a service-wide practice change are described. Results: This model was considered a feasible method for successful research utilisation. In this case report, chlorhexidine-impregnated sponge dressings were proposed and implemented in the tertiary cancer centre with an aim of reducing the incidence of centrally inserted catheter-related bloodstream infections and potentially improving patient health outcomes. Conclusion: The CMEBP is feasible and effective for implementing clinical evidence into cancer nursing practice. Cancer nurses and health administrators need to ensure a supportive infrastructure and environment for clinical inquiry and research utilisation exists, in order to enable successful implementation of evidence-based practice in their cancer centres.
Resumo:
BACKGROUND: US Centers for Disease Control guidelines recommend replacement of peripheral intravenous (IV) catheters no more frequently than every 72 to 96 hours. Routine replacement is thought to reduce the risk of phlebitis and bloodstream infection. Catheter insertion is an unpleasant experience for patients and replacement may be unnecessary if the catheter remains functional and there are no signs of inflammation. Costs associated with routine replacement may be considerable. This is an update of a review first published in 2010. OBJECTIVES: To assess the effects of removing peripheral IV catheters when clinically indicated compared with removing and re-siting the catheter routinely. SEARCH METHODS: For this update the Cochrane Peripheral Vascular Diseases (PVD) Group Trials Search Co-ordinator searched the PVD Specialised Register (December 2012) and CENTRAL (2012, Issue 11). We also searched MEDLINE (last searched October 2012) and clinical trials registries. SELECTION CRITERIA: Randomised controlled trials that compared routine removal of peripheral IV catheters with removal only when clinically indicated in hospitalised or community dwelling patients receiving continuous or intermittent infusions. DATA COLLECTION AND ANALYSIS: Two review authors independently assessed trial quality and extracted data. MAIN RESULTS: Seven trials with a total of 4895 patients were included in the review. Catheter-related bloodstream infection (CRBSI) was assessed in five trials (4806 patients). There was no significant between group difference in the CRBSI rate (clinically-indicated 1/2365; routine change 2/2441). The risk ratio (RR) was 0.61 but the confidence interval (CI) was wide, creating uncertainty around the estimate (95% CI 0.08 to 4.68; P = 0.64). No difference in phlebitis rates was found whether catheters were changed according to clinical indications or routinely (clinically-indicated 186/2365; 3-day change 166/2441; RR 1.14, 95% CI 0.93 to 1.39). This result was unaffected by whether infusion through the catheter was continuous or intermittent. We also analysed the data by number of device days and again no differences between groups were observed (RR 1.03, 95% CI 0.84 to 1.27; P = 0.75). One trial assessed all-cause bloodstream infection. There was no difference in this outcome between the two groups (clinically-indicated 4/1593 (0.02%); routine change 9/1690 (0.05%); P = 0.21). Cannulation costs were lower by approximately AUD 7.00 in the clinically-indicated group (mean difference (MD) -6.96, 95% CI -9.05 to -4.86; P ≤ 0.00001). AUTHORS' CONCLUSIONS: The review found no evidence to support changing catheters every 72 to 96 hours. Consequently, healthcare organisations may consider changing to a policy whereby catheters are changed only if clinically indicated. This would provide significant cost savings and would spare patients the unnecessary pain of routine re-sites in the absence of clinical indications. To minimise peripheral catheter-related complications, the insertion site should be inspected at each shift change and the catheter removed if signs of inflammation, infiltration, or blockage are present. OBJECTIVES: To assess the effects of removing peripheral IV catheters when clinically indicated compared with removing and re-siting the catheter routinely. SEARCH METHODS: For this update the Cochrane Peripheral Vascular Diseases (PVD) Group Trials Search Co-ordinator searched the PVD Specialised Register (December 2012) and CENTRAL (2012, Issue 11). We also searched MEDLINE (last searched October 2012) and clinical trials registries. SELECTION CRITERIA: Randomised controlled trials that compared routine removal of peripheral IV catheters with removal only when clinically indicated in hospitalised or community dwelling patients receiving continuous or intermittent infusions. DATA COLLECTION AND ANALYSIS: Two review authors independently assessed trial quality and extracted data. MAIN RESULTS: Seven trials with a total of 4895 patients were included in the review. Catheter-related bloodstream infection (CRBSI) was assessed in five trials (4806 patients). There was no significant between group difference in the CRBSI rate (clinically-indicated 1/2365; routine change 2/2441). The risk ratio (RR) was 0.61 but the confidence interval (CI) was wide, creating uncertainty around the estimate (95% CI 0.08 to 4.68; P = 0.64). No difference in phlebitis rates was found whether catheters were changed according to clinical indications or routinely (clinically-indicated 186/2365; 3-day change 166/2441; RR 1.14, 95% CI 0.93 to 1.39). This result was unaffected by whether infusion through the catheter was continuous or intermittent. We also analysed the data by number of device days and again no differences between groups were observed (RR 1.03, 95% CI 0.84 to 1.27; P = 0.75). One trial assessed all-cause bloodstream infection. There was no difference in this outcome between the two groups (clinically-indicated 4/1593 (0.02%); routine change 9/1690 (0.05%); P = 0.21). Cannulation costs were lower by approximately AUD 7.00 in the clinically-indicated group (mean difference (MD) -6.96, 95% CI -9.05 to -4.86; P ≤ 0.00001). AUTHORS' CONCLUSIONS: The review found no evidence to support changing catheters every 72 to 96 hours. Consequently, healthcare organisations may consider changing to a policy whereby catheters are changed only if clinically indicated. This would provide significant cost savings and would spare patients the unnecessary pain of routine re-sites in the absence of clinical indications. To minimise peripheral catheter-related complications, the insertion site should be inspected at each shift change and the catheter removed if signs of inflammation, infiltration, or blockage are present.