999 resultados para Catene di Markov, MCMC, Algoritmo di Hastings-Metropolis, Campionamento di Gibbs


Relevância:

100.00% 100.00%

Publicador:

Resumo:

O objetivo deste trabalho foi apresentar modelagens alternativas, uni e bivariadas, para avaliação da conversão alimentar (CA) de suínos da raça Piau, com uso de inferência bayesiana. Os efeitos de sexo e genótipo sobre a CA dos animais foram avaliados por meio de procedimentos de simulação de Monte Carlo via cadeias de Markov (MCMC) e de integração aproximada aninhada de Laplace (INLA). O modelo univariado foi avaliado com diferentes distribuições para o erro - normal (gaussiana), t de Student, gama, log-normal e skew-normal -, enquanto, para o modelo bivariado, considerou-se o erro normal. A distribuição skew-normal foi o modelo mais parcimonioso para inferir sobre a resposta direta (univariada) da CA aos efeitos de sexo e genótipo, os quais não foram significativos. O modelo bivariado foi capaz de identificar diferenças significativas no ganho de peso e no consumo de ração em níveis de significância não detectados pelo modelo univariado. Além disso, ele também foi capaz de detectar diferenças entre sexos, quando agrupados por genótipos NN (machos, 2,73±0,04; fêmeas, 2,68±0,04) e Nn (machos, 2,70±0,07; fêmeas, 2,64±0,07), e revelou maior acurácia e precisão nas inferências nutricionais. Em ambas as abordagens, o método bayesiano mostra-se flexível e eficiente para a avaliação do desempenho nutricional dos animais.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Notre consommation en eau souterraine, en particulier comme eau potable ou pour l'irrigation, a considérablement augmenté au cours des années. De nombreux problèmes font alors leur apparition, allant de la prospection de nouvelles ressources à la remédiation des aquifères pollués. Indépendamment du problème hydrogéologique considéré, le principal défi reste la caractérisation des propriétés du sous-sol. Une approche stochastique est alors nécessaire afin de représenter cette incertitude en considérant de multiples scénarios géologiques et en générant un grand nombre de réalisations géostatistiques. Nous rencontrons alors la principale limitation de ces approches qui est le coût de calcul dû à la simulation des processus d'écoulements complexes pour chacune de ces réalisations. Dans la première partie de la thèse, ce problème est investigué dans le contexte de propagation de l'incertitude, oú un ensemble de réalisations est identifié comme représentant les propriétés du sous-sol. Afin de propager cette incertitude à la quantité d'intérêt tout en limitant le coût de calcul, les méthodes actuelles font appel à des modèles d'écoulement approximés. Cela permet l'identification d'un sous-ensemble de réalisations représentant la variabilité de l'ensemble initial. Le modèle complexe d'écoulement est alors évalué uniquement pour ce sousensemble, et, sur la base de ces réponses complexes, l'inférence est faite. Notre objectif est d'améliorer la performance de cette approche en utilisant toute l'information à disposition. Pour cela, le sous-ensemble de réponses approximées et exactes est utilisé afin de construire un modèle d'erreur, qui sert ensuite à corriger le reste des réponses approximées et prédire la réponse du modèle complexe. Cette méthode permet de maximiser l'utilisation de l'information à disposition sans augmentation perceptible du temps de calcul. La propagation de l'incertitude est alors plus précise et plus robuste. La stratégie explorée dans le premier chapitre consiste à apprendre d'un sous-ensemble de réalisations la relation entre les modèles d'écoulement approximé et complexe. Dans la seconde partie de la thèse, cette méthodologie est formalisée mathématiquement en introduisant un modèle de régression entre les réponses fonctionnelles. Comme ce problème est mal posé, il est nécessaire d'en réduire la dimensionnalité. Dans cette optique, l'innovation du travail présenté provient de l'utilisation de l'analyse en composantes principales fonctionnelles (ACPF), qui non seulement effectue la réduction de dimensionnalités tout en maximisant l'information retenue, mais permet aussi de diagnostiquer la qualité du modèle d'erreur dans cet espace fonctionnel. La méthodologie proposée est appliquée à un problème de pollution par une phase liquide nonaqueuse et les résultats obtenus montrent que le modèle d'erreur permet une forte réduction du temps de calcul tout en estimant correctement l'incertitude. De plus, pour chaque réponse approximée, une prédiction de la réponse complexe est fournie par le modèle d'erreur. Le concept de modèle d'erreur fonctionnel est donc pertinent pour la propagation de l'incertitude, mais aussi pour les problèmes d'inférence bayésienne. Les méthodes de Monte Carlo par chaîne de Markov (MCMC) sont les algorithmes les plus communément utilisés afin de générer des réalisations géostatistiques en accord avec les observations. Cependant, ces méthodes souffrent d'un taux d'acceptation très bas pour les problèmes de grande dimensionnalité, résultant en un grand nombre de simulations d'écoulement gaspillées. Une approche en deux temps, le "MCMC en deux étapes", a été introduite afin d'éviter les simulations du modèle complexe inutiles par une évaluation préliminaire de la réalisation. Dans la troisième partie de la thèse, le modèle d'écoulement approximé couplé à un modèle d'erreur sert d'évaluation préliminaire pour le "MCMC en deux étapes". Nous démontrons une augmentation du taux d'acceptation par un facteur de 1.5 à 3 en comparaison avec une implémentation classique de MCMC. Une question reste sans réponse : comment choisir la taille de l'ensemble d'entrainement et comment identifier les réalisations permettant d'optimiser la construction du modèle d'erreur. Cela requiert une stratégie itérative afin que, à chaque nouvelle simulation d'écoulement, le modèle d'erreur soit amélioré en incorporant les nouvelles informations. Ceci est développé dans la quatrième partie de la thèse, oú cette méthodologie est appliquée à un problème d'intrusion saline dans un aquifère côtier. -- Our consumption of groundwater, in particular as drinking water and for irrigation, has considerably increased over the years and groundwater is becoming an increasingly scarce and endangered resource. Nofadays, we are facing many problems ranging from water prospection to sustainable management and remediation of polluted aquifers. Independently of the hydrogeological problem, the main challenge remains dealing with the incomplete knofledge of the underground properties. Stochastic approaches have been developed to represent this uncertainty by considering multiple geological scenarios and generating a large number of realizations. The main limitation of this approach is the computational cost associated with performing complex of simulations in each realization. In the first part of the thesis, we explore this issue in the context of uncertainty propagation, where an ensemble of geostatistical realizations is identified as representative of the subsurface uncertainty. To propagate this lack of knofledge to the quantity of interest (e.g., the concentration of pollutant in extracted water), it is necessary to evaluate the of response of each realization. Due to computational constraints, state-of-the-art methods make use of approximate of simulation, to identify a subset of realizations that represents the variability of the ensemble. The complex and computationally heavy of model is then run for this subset based on which inference is made. Our objective is to increase the performance of this approach by using all of the available information and not solely the subset of exact responses. Two error models are proposed to correct the approximate responses follofing a machine learning approach. For the subset identified by a classical approach (here the distance kernel method) both the approximate and the exact responses are knofn. This information is used to construct an error model and correct the ensemble of approximate responses to predict the "expected" responses of the exact model. The proposed methodology makes use of all the available information without perceptible additional computational costs and leads to an increase in accuracy and robustness of the uncertainty propagation. The strategy explored in the first chapter consists in learning from a subset of realizations the relationship between proxy and exact curves. In the second part of this thesis, the strategy is formalized in a rigorous mathematical framework by defining a regression model between functions. As this problem is ill-posed, it is necessary to reduce its dimensionality. The novelty of the work comes from the use of functional principal component analysis (FPCA), which not only performs the dimensionality reduction while maximizing the retained information, but also allofs a diagnostic of the quality of the error model in the functional space. The proposed methodology is applied to a pollution problem by a non-aqueous phase-liquid. The error model allofs a strong reduction of the computational cost while providing a good estimate of the uncertainty. The individual correction of the proxy response by the error model leads to an excellent prediction of the exact response, opening the door to many applications. The concept of functional error model is useful not only in the context of uncertainty propagation, but also, and maybe even more so, to perform Bayesian inference. Monte Carlo Markov Chain (MCMC) algorithms are the most common choice to ensure that the generated realizations are sampled in accordance with the observations. Hofever, this approach suffers from lof acceptance rate in high dimensional problems, resulting in a large number of wasted of simulations. This led to the introduction of two-stage MCMC, where the computational cost is decreased by avoiding unnecessary simulation of the exact of thanks to a preliminary evaluation of the proposal. In the third part of the thesis, a proxy is coupled to an error model to provide an approximate response for the two-stage MCMC set-up. We demonstrate an increase in acceptance rate by a factor three with respect to one-stage MCMC results. An open question remains: hof do we choose the size of the learning set and identify the realizations to optimize the construction of the error model. This requires devising an iterative strategy to construct the error model, such that, as new of simulations are performed, the error model is iteratively improved by incorporating the new information. This is discussed in the fourth part of the thesis, in which we apply this methodology to a problem of saline intrusion in a coastal aquifer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neste trabalho foi considerado o modelo de Curtis para a relação hipsométrica em clones de Eucalyptus sp. com os parâmetros sujeitos a restrições. Para fazer a inferência dos parâmetros do modelo com restrições, utilizou-se uma abordagem bayesiana com densidade a priori construída empiricamente. As estimativas bayesianas são calculadas com a técnica de simulação de Monte Carlo em Cadeia de Markov (MCMC). O método proposto foi aplicado a diferentes conjuntos de dados reais, dos quais foram selecionados cinco para exemplificar os resultados. Estes foram comparados com os resultados obtidos pelo método de mínimos quadrados, destacando-se a superioridade da abordagem bayesiana proposta.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La méthode que nous présentons pour modéliser des données dites de "comptage" ou données de Poisson est basée sur la procédure nommée Modélisation multi-niveau et interactive de la régression de Poisson (PRIMM) développée par Christiansen et Morris (1997). Dans la méthode PRIMM, la régression de Poisson ne comprend que des effets fixes tandis que notre modèle intègre en plus des effets aléatoires. De même que Christiansen et Morris (1997), le modèle étudié consiste à faire de l'inférence basée sur des approximations analytiques des distributions a posteriori des paramètres, évitant ainsi d'utiliser des méthodes computationnelles comme les méthodes de Monte Carlo par chaînes de Markov (MCMC). Les approximations sont basées sur la méthode de Laplace et la théorie asymptotique liée à l'approximation normale pour les lois a posteriori. L'estimation des paramètres de la régression de Poisson est faite par la maximisation de leur densité a posteriori via l'algorithme de Newton-Raphson. Cette étude détermine également les deux premiers moments a posteriori des paramètres de la loi de Poisson dont la distribution a posteriori de chacun d'eux est approximativement une loi gamma. Des applications sur deux exemples de données ont permis de vérifier que ce modèle peut être considéré dans une certaine mesure comme une généralisation de la méthode PRIMM. En effet, le modèle s'applique aussi bien aux données de Poisson non stratifiées qu'aux données stratifiées; et dans ce dernier cas, il comporte non seulement des effets fixes mais aussi des effets aléatoires liés aux strates. Enfin, le modèle est appliqué aux données relatives à plusieurs types d'effets indésirables observés chez les participants d'un essai clinique impliquant un vaccin quadrivalent contre la rougeole, les oreillons, la rub\'eole et la varicelle. La régression de Poisson comprend l'effet fixe correspondant à la variable traitement/contrôle, ainsi que des effets aléatoires liés aux systèmes biologiques du corps humain auxquels sont attribués les effets indésirables considérés.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Les modèles pharmacocinétiques à base physiologique (PBPK) permettent de simuler la dose interne de substances chimiques sur la base de paramètres spécifiques à l’espèce et à la substance. Les modèles de relation quantitative structure-propriété (QSPR) existants permettent d’estimer les paramètres spécifiques au produit (coefficients de partage (PC) et constantes de métabolisme) mais leur domaine d’application est limité par leur manque de considération de la variabilité de leurs paramètres d’entrée ainsi que par leur domaine d’application restreint (c. à d., substances contenant CH3, CH2, CH, C, C=C, H, Cl, F, Br, cycle benzénique et H sur le cycle benzénique). L’objectif de cette étude est de développer de nouvelles connaissances et des outils afin d’élargir le domaine d’application des modèles QSPR-PBPK pour prédire la toxicocinétique de substances organiques inhalées chez l’humain. D’abord, un algorithme mécaniste unifié a été développé à partir de modèles existants pour prédire les PC de 142 médicaments et polluants environnementaux aux niveaux macro (tissu et sang) et micro (cellule et fluides biologiques) à partir de la composition du tissu et du sang et de propriétés physicochimiques. L’algorithme résultant a été appliqué pour prédire les PC tissu:sang, tissu:plasma et tissu:air du muscle (n = 174), du foie (n = 139) et du tissu adipeux (n = 141) du rat pour des médicaments acides, basiques et neutres ainsi que pour des cétones, esters d’acétate, éthers, alcools, hydrocarbures aliphatiques et aromatiques. Un modèle de relation quantitative propriété-propriété (QPPR) a été développé pour la clairance intrinsèque (CLint) in vivo (calculée comme le ratio du Vmax (μmol/h/kg poids de rat) sur le Km (μM)), de substrats du CYP2E1 (n = 26) en fonction du PC n octanol:eau, du PC sang:eau et du potentiel d’ionisation). Les prédictions du QPPR, représentées par les limites inférieures et supérieures de l’intervalle de confiance à 95% à la moyenne, furent ensuite intégrées dans un modèle PBPK humain. Subséquemment, l’algorithme de PC et le QPPR pour la CLint furent intégrés avec des modèles QSPR pour les PC hémoglobine:eau et huile:air pour simuler la pharmacocinétique et la dosimétrie cellulaire d’inhalation de composés organiques volatiles (COV) (benzène, 1,2-dichloroéthane, dichlorométhane, m-xylène, toluène, styrène, 1,1,1 trichloroéthane et 1,2,4 trimethylbenzène) avec un modèle PBPK chez le rat. Finalement, la variabilité de paramètres de composition des tissus et du sang de l’algorithme pour les PC tissu:air chez le rat et sang:air chez l’humain a été caractérisée par des simulations Monte Carlo par chaîne de Markov (MCMC). Les distributions résultantes ont été utilisées pour conduire des simulations Monte Carlo pour prédire des PC tissu:sang et sang:air. Les distributions de PC, avec celles des paramètres physiologiques et du contenu en cytochrome P450 CYP2E1, ont été incorporées dans un modèle PBPK pour caractériser la variabilité de la toxicocinétique sanguine de quatre COV (benzène, chloroforme, styrène et trichloroéthylène) par simulation Monte Carlo. Globalement, les approches quantitatives mises en œuvre pour les PC et la CLint dans cette étude ont permis l’utilisation de descripteurs moléculaires génériques plutôt que de fragments moléculaires spécifiques pour prédire la pharmacocinétique de substances organiques chez l’humain. La présente étude a, pour la première fois, caractérisé la variabilité des paramètres biologiques des algorithmes de PC pour étendre l’aptitude des modèles PBPK à prédire les distributions, pour la population, de doses internes de substances organiques avant de faire des tests chez l’animal ou l’humain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A determinação da taxa de juros estrutura a termo é um dos temas principais da gestão de ativos financeiros. Considerando a grande importância dos ativos financeiros para a condução das políticas econômicas, é fundamental para compreender a estrutura que é determinado. O principal objetivo deste estudo é estimar a estrutura a termo das taxas de juros brasileiras, juntamente com taxa de juros de curto prazo. A estrutura a termo será modelado com base em um modelo com uma estrutura afim. A estimativa foi feita considerando a inclusão de três fatores latentes e duas variáveis ​​macroeconômicas, através da técnica Bayesiana da Cadeia de Monte Carlo Markov (MCMC).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUÇÃO: A malaria é uma doença endêmica na região da Amazônia Brasileira, e a detecção de possíveis fatores de risco pode ser de grande interesse às autoridades em saúde pública. O objetivo deste artigo é investigar a associação entre variáveis ambientais e os registros anuais de malária na região amazônica usando métodos bayesianos espaço-temporais. MÉTODOS: Utilizaram-se modelos de regressão espaço-temporais de Poisson para analisar os dados anuais de contagem de casos de malária entre os anos de 1999 a 2008, considerando a presença de alguns fatores como a taxa de desflorestamento. em uma abordagem bayesiana, as inferências foram obtidas por métodos Monte Carlo em cadeias de Markov (MCMC) que simularam amostras para a distribuição conjunta a posteriori de interesse. A discriminação de diferentes modelos também foi discutida. RESULTADOS: O modelo aqui proposto sugeriu que a taxa de desflorestamento, o número de habitants por km² e o índice de desenvolvimento humano (IDH) são importantes para a predição de casos de malária. CONCLUSÕES: É possível concluir que o desenvolvimento humano, o crescimento populacional, o desflorestamento e as alterações ecológicas associadas a estes fatores estão associados ao aumento do risco de malária. Pode-se ainda concluir que o uso de modelos de regressão de Poisson que capturam o efeito temporal e espacial em um enfoque bayesiano é uma boa estratégia para modelar dados de contagem de malária.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stellar differential rotation is an important key to understand hydromagnetic stellar dynamos, instabilities, and transport processes in stellar interiors as well as for a better treatment of tides in close binary and star-planet systems. The space-borne high-precision photometry with MOST, CoRoT, and Kepler has provided large and homogeneous datasets. This allows, for the first time, the study of differential rotation statistically robust samples covering almost all stages of stellar evolution. In this sense, we introduce a method to measure a lower limit to the amplitude of surface differential rotation from high-precision evenly sampled photometric time series such as those obtained by space-borne telescopes. It is designed for application to main-sequence late-type stars whose optical flux modulation is dominated by starspots. An autocorrelation of the time series is used to select stars that allow an accurate determination of spot rotation periods. A simple two-spot model is applied together with a Bayesian Information Criterion to preliminarily select intervals of the time series showing evidence of differential rotation with starspots of almost constant area. Finally, the significance of the differential rotation detection and a measurement of its amplitude and uncertainty are obtained by an a posteriori Bayesian analysis based on a Monte Carlo Markov Chain (hereafter MCMC) approach. We apply our method to the Sun and eight other stars for which previous spot modelling has been performed to compare our results with previous ones. The selected stars are of spectral type F, G and K. Among the main results of this work, We find that autocorrelation is a simple method for selecting stars with a coherent rotational signal that is a prerequisite to a successful measurement of differential rotation through spot modelling. For a proper MCMC analysis, it is necessary to take into account the strong correlations among different parameters that exists in spot modelling. For the planethosting star Kepler-30, we derive a lower limit to the relative amplitude of the differential rotation. We confirm that the Sun as a star in the optical passband is not suitable for a measurement of the differential rotation owing to the rapid evolution of its photospheric active regions. In general, our method performs well in comparison with more sophisticated procedures used until now in the study of stellar differential rotation

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Um modelo bayesiano de regressão binária é desenvolvido para predizer óbito hospitalar em pacientes acometidos por infarto agudo do miocárdio. Métodos de Monte Carlo via Cadeias de Markov (MCMC) são usados para fazer inferência e validação. Uma estratégia para construção de modelos, baseada no uso do fator de Bayes, é proposta e aspectos de validação são extensivamente discutidos neste artigo, incluindo a distribuição a posteriori para o índice de concordância e análise de resíduos. A determinação de fatores de risco, baseados em variáveis disponíveis na chegada do paciente ao hospital, é muito importante para a tomada de decisão sobre o curso do tratamento. O modelo identificado se revela fortemente confiável e acurado, com uma taxa de classificação correta de 88% e um índice de concordância de 83%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Matematica Aplicada e Computacional - FCT

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Studio dei sistemi termodinamici che possono accedere a stati di inversione di popolazione. Confronto dei risultati ottenuti studiando questi sistemi sia con l'approccio di Boltzmann che con quello di Gibbs alla meccanica statistica.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In questo lavoro di tesi abbiamo studiato la relazione esistente tra la concentrazione di drogante in un wafer di silicio e l’energia superficiale del suo ossido nativo. 
La strumentazione utilizzata per la misura dell’energia superficiale è il tensiometro ottico, uno strumento semplice ma efficace per valutare le proprietà chimico-fisiche dell’interfaccia liquido-solido.
 Il tensiometro ottico misura l’angolo di contatto statico e dinamico. La misura dell’angolo statico ci ha permesso di valutare l’energia superficiale dell’ossido nativo attraverso il metodo di Owen-Wendt. Per valutare l’omogeneità chimica/fisica dell’ossido abbiamo invece misurato l’isteresi dell’angolo di contatto in configurazione dinamica. Le misure di angolo statico e dinamico sono state realizzate su 10 frammenti di wafer di silicio a concentrazione crescente da 10^13 a 10^19 atomi/cm^3 di entrambi i tipi di drogante (ossia di tipo p - boro - e di tipo n - fosforo -). E’ stato osservato che, per i substrati drogati con boro, l’energia superficiale presenta un picco corrispondente ad una concentrazione di circa 10^15 atomi/cm^3 nell’intervallo di concentrazione 2 · 10^13 − 1.6 · 10^16 atomi/cm^3. Mentre i campioni drogati con fosforo presentano un andamento dell’energia superficiale leggermente crescente al crescere della concentrazione di drogaggio nell’intervallo di concentrazione 6.5 · 10^14 − 1.5 · 10^19 atomi/cm^3. Questo risultato è stato correlato alla diffusione degli atomi di drogante nell’ossido che raggiunge l’interfaccia SiO2 − Aria. 
 L’osservazione sperimentale che l’energia superficiale dell’ossido dipenda dalla concentrazione di drogante è avvalorata dal confronto fra la componente polare e dispersiva, in particolare la componente polare presenta lo stesso picco osservato nell’energia superficiale. Le impurità nell’ossido, determinate dagli atomi di drogante, conferiscono quindi polarità alla superficie aumentando l’energia superficiale totale. 
Dal confronto fra le misure dei campioni as received con le misure dell’ossido ricostruito dopo 7 e 21 giorni di esposizione all’aria, ricaviamo che gli atomi di drogante diffondono nel tempo e, in particolare, la polarità superficiale ritorna alle con- dizioni as recived dopo 21 giorni dalla rimozione dell’ossido. 
E’ stata simulata numericamente una goccia su una superficie, comprendendo come il picco osservato nell’energia superficiale corrisponde ad un minimo dell’energia di Gibbs per i campioni di tipo p. 
Infine, l’isteresi aumenta in valor medio per i campioni con ossido ricostruito rispetto ai campioni as recived, ad indicare una possibile variazione dell’omogeneità chimico-fisica delle superfici.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In questa tesi studiamo l'effetto Gibbs. Tale fenomeno si manifesta tramite la presenza di sovra-oscillazioni nei polinomi di Fourier di funzioni che presentano discontinuità di prima specie. La differenza tra il massimo ed il minimo del polinomio di Fourier di tali funzioni, in prossimità di un punto di discontinuità della funzione, è strettamente maggiore del salto della funzione in quel punto, anche per n che tende all'infinito. Per attenuare le sovra-oscillazioni delle somme parziali di Fourier si utilizzano le serie di Fejer e si vede come effettivamente il fenomeno di Gibbs scompaia.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In questa questa tesi vengono presentate alcune delle più importanti definizioni di funzione computabile mediante un algoritmo: una prima descrizione è quella data tramite le funzioni ricorsive, un secondo approccio è dato in termini di macchine di Turing, infine, vengono considerati gli algoritmi di Markov. Si dimostra che tutte queste definizioni sono equivalenti. Completa la tesi un breve cenno al lambda-K-calcolo.