995 resultados para Carrier type


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The relationship between charge carrier lifetime and mobility in a bulk heterojunction based organic solar cell, utilizing diketopyrrolopyrole- naphthalene co-polymer and PC71BM in the photoactive blend layer, is investigated using the photoinduced charge extraction by linearly increasing voltage technique. Light intensity, delay time, and temperature dependent experiments are used to quantify the charge carrier mobility and density as well as the temperature dependence of both. From the saturation of photoinduced current at high laser intensities, it is shown that Langevin-type bimolecular recombination is present in the studied system. The charge carrier lifetime, especially in Langevin systems, is discussed to be an ambiguous and unreliable parameter to determine the performance of organic solar cells, because of the dependence of charge carrier lifetime on charge carrier density, mobility, and type of recombination. It is revealed that the relation between charge mobility (μ) and lifetime (τ) is inversely proportional, where the μτ product is independent of temperature. The results indicate that in photovoltaic systems with Langevin type bimolecular recombination, the strategies to increase the charge lifetime might not be beneficial because of an accompanying reduction in charge carrier mobility. Instead, the focus on non-Langevin mechanisms of recombination is crucial, because this allows an increase in the charge extraction rate by improving the carrier lifetime, density, and mobility simultaneously. © 2013 AIP Publishing LLC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hot metal carriers (HMCs) are large forklift-type vehicles used to move molten metal in aluminum smelters. This paper reports on field experiments that demonstrate that HMCs can operate autonomously and in particular can use vision as a primary sensor to locate the load of aluminum. We present our complete system but focus on the vision system elements and also detail experiments demonstrating reliable operation of the materials handling task. Two key experiments are described, lasting 2 and 5 h, in which the HMC traveled 15 km in total and handled the load 80 times.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reports work on the automation of a hot metal carrier, which is a 20 tonne forklift-type vehicle used to move molten metal in aluminium smelters. To achieve efficient vehicle operation, issues of autonomous navigation and materials handling must be addressed. We present our complete system and experiments demonstrating reliable operation. One of the most significant experiments was five-hours of continuous operation where the vehicle travelled over 8 km and conducted 60 load handling operations. Finally, an experiment where the vehicle and autonomous operation were supervised from the other side of the world via a satellite phone network are described.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reports work involved with the automation of a Hot Metal Carrier — a 20 tonne forklift-type vehicle used to move molten metal in aluminium smelters. To achieve efficient vehicle operation, issues of autonomous navigation and materials handling must be addressed. We present our complete system and experiments demontrating reliable operation. One of the most significant experiments was five-hours of continuous operation where the vehicle travelled over 8 km and conducted 60 load handling operations. We also describe an experiment where the vehicle and autonomous operation were supervised from the other side of the world via a satellite phone network.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sensors to detect toxic and harmful gases are usually based on metal oxides that are operated at elevated temperature. However, enabling gas detection at room temperature (RT) is a significant ongoing challenge. Here, we address this issue by demonstrating that microrods of semiconducting CuTCNQ (TCNQ=7,7,8,8-tetracyanoquinodimethane) with nanostructured features can be employed as conductometric gas sensors operating at 50°C for detection of oxidizing and reducing gases such as NO2 and NH3. The sensor is evaluated at RT and up to 200°C. It was found that CuTCNQ is transformed into a N-doped CuO material with p-type conductivity when annealed at the maximum temperature. This is the first time that such a transformation, from a semiconducting charge transfer material into a N-doped metal oxide is detected. It is shown here that both the surface chemistry and the type of majority charge carrier within the sensing layer is critically important for the type of response towards oxidizing and reducing gases. A detailed physical description of NO2 and NH3 sensing mechanism at CuTCNQ and N-doped CuO is provided to explain the difference in the response. For the N-doped CuO sensor, a detection limit of 1 ppm for NO2 and 10 ppm for NH3 are achieved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The type III secretion system (T3SS) is an essential requirement for the virulence of many Gram-negative bacteria which infect plants, animals and men. Pathogens use the T3SS to deliver effector proteins from the bacterial cytoplasm to the eukaryotic host cells, where the effectors subvert host defenses. The best candidates for directing effector protein traffic are the bacterial type III-associated appendages, called needles or pili. In plant pathogenic bacteria, the best characterized example of a T3SS-associated appendage is the HrpA pilus of the plant pathogen Pseudomonas syringae pv. tomato DC3000. The components of the T3SS in plant pathogens are encoded by a cluster of hrp (hypersensitive reaction and pathogenicity) genes. Two major classes of T3SS-secreted proteins are: harpin proteins such as HrpZ which are exported into extracellular space, and avirulence (Avr) proteins such as AvrPto which are translocated directly to the plant cytoplasm. This study deals with the structural and functional characterization of the T3SS-associated HrpA pilus and the T3SS-secreted harpins. By insertional mutagenesis analysis of HrpA, we located the optimal epitope insertion site in the amino-terminus of HrpA, and revealed the potential application of the HrpA pilus as a carrier of antigenic determinants for vaccination. By pulse-expression of proteins combined with immuno-electron microscopy, we discovered the Hrp pilus assembly strategy as addition of HrpA subunits to the distal end of the growing pilus, and we showed for the first time that secretion of HrpZ occurs at the tip of the pilus. The pilus thus functions as a conduit delivering proteins to the extracellular milieu. By using phage-display and scanning-insertion mutagenesis methods we identified a conserved HrpZ-binding peptide and localized the peptide-binding site to the central domain of HrpZ. We also found that the HrpZ specifically interacts with a host bean protein. Taken together, the current results provide deeper insight into the molecular mechanism of T3SS-associated pilus assembly and effector protein translocation, which will be helpful for further studies on the pathogenic mechanisms of Gram-negative bacteria and for developing new strategies to prevent bacterial infection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acyl Carrier Protein (ACP) from the malaria parasite, Plasmodium falciparum (PfACP) in its holo form is found to exist in two conformational states in solution. Unique 3D solution structures of holo-PfACP have been determined for both equilibrium conformations, using high-resolution NMR methods. Twenty high-resolution solution structures for each of the two forms of holo-PfACP have been determined on the basis of 1226 and 1218 unambiguously assigned NOEs (including NOEs between 4 '-phosphopantetheine prosthetic group (4 '-PP) and protein), 55 backbone dihedral angles and 26 hydrogen bonds. The atomic rmsd values of the determined structures of two equilibrium forms, about the mean coordinates of the backbone and heavy atoms, are 0.48 +/- 0.09 and 0.92 +/- 0.10 and 0.49 +/- 0.08 and 0.97 +/- 0.11 angstrom, respectively. The interaction of 4 '-PP with the polypeptide backbone is reported here for the first time for any of the ACPs. The structures of holo-PfACP consist of three well-defined helices that are tightly packed. The structured regions of the molecule are stabilized by extensive hydrophobic interactions. The difference between the two forms arises from a reorientation of the 4 '-PP group. The enthalpy difference between the two forms, although small, implies that a conformational switch is essential for the activation of holo-ACP. Sequence and structures of holo-PfACP have been compared with those of the ACPs from type I and type II fatty acid biosynthesis pathways (FAS), in particular with the ACP from rat and the butyryl-ACP from E. coli. The PfACP structure, thus determined has several novel features hitherto not seen in other ACPs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is now well established that the potent anti-microbial compound, triclosan, interrupts the type II fatty acid synthesis by inhibiting the enzyme enoyl-ACP reductase in a number of organisms. Existence of a high degree of similarity between the recently discovered enoyl-ACP reductase from R falciparum and B. napus enzyme permitted building of a satisfactory model for the former enzyme that explained some of the key aspects of the enzyme such as its specificity for binding to the cofactor and the inhibitor. We now report the interaction energies between triclosan and other hydroxydiphenyl ethers with the enzymes from B. napus, E. coli and R falciparum. Examination of the triclosan-enzyme interactions revealed that subtle differences exist in the ligand binding sites of the enzymes from different sources i.e., B. napus, E. coli and P falciparum. A comparison of their binding propensities thus determined should aid in the design of effective inhibitors for the respective enzymes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Enoyl acyl carrier protein reductase (ENR), which catalyzes the final and rate limiting step of fatty acid elongation, has been validated as a potential drug target. Triclosan is known to be an effective inhibitor for this enzyme. We mutated the substrate binding site residue Ala372 of the ENR of Plasmodium falciparum (PfENR) to Methionine and Valine which increased the affinity of the enzyme towards triclosan to almost double, close to that of Escherichia coli ENR (EcENR) which has a Methionine at the structurally similar position of Ala372 of PfENR. Kinetic studies of the mutants of PfENR and the crystal structure analysis of the A372M mutant revealed that a more hydrophobic environment enhances the affinity of the enzyme for the inhibitor. A triclosan derivative showed a threefold increase in the affinity towards the mutants compared to the wild type, due to additional interactions with the A372M mutant as revealed by the crystal structure. The enzyme has a conserved salt bridge which stabilizes the substrate binding loop and appears to be important for the active conformation of the enzyme. We generated a second set of mutants to check this hypothesis. These mutants showed loss of function, except in one case, where the crystal structure showed that the substrate binding loop is stabilized by a water bridge network. (C) 2011 IUBMB mum Life, 63(1): 30-41,2011

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Monoclonal antibodies (mAbs) to chicken thiamin carrier protein (TCP) have been produced by hybridoma technology to identify the crucial epitopes involved in bioneutralization of the vitamin carrier. The monoclonality of these mAbs (A4C4, F3H6, H8H3, C8C1 and G7H10) was sought to be confirmed by sub-class isotyping; they all belong to IgG1, k type. The epitopes recognized by all the five mAbs are conserved in TCP from the chicken to the rat as assessed by liquid phase RIA and immunoprecipitation of I-125-labelled proteins from pregnant rat serum. Among these mAbs, passive immunization of pregnant rats with the mAb C8C1 only on three consecutive days (day 10, 11 and 12) resulted in embryonic resorption. These results demonstrate the importance of epitopic structure specified by the mAb C8C1 on TCP during pregnancy in rats.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dimethylzine (DMZn) was used as a p-type dopant in GaAs grown by low pressure metalorganic vapor phase epitaxy using trimethylgallium and arsine (AsH3) as source materials, The hole carrier concentrations and zinc (Zn) incorporation efficiency are studied by using the Hall effect, electrochemical capacitance voltage profiler and photoluminescence (PL) spectroscopy, The influence of growth parameters such as DMZn mole fraction, growth temperature, and AsH, mole fraction on the Zn incorporation have been studied. The hole concentration increases with increasing DMZn and AsH3 mole fraction and decreases with increasing growth temperature. This can be explained by vacancy control model. The PL experiments were carried out as a function of hole concentration (10(17)-1.5 x 10(20) cm(-3)). The main peak shifted to lower energy and the full width at half maximum (FWHM) increases with increasing hole concentrations. We have obtained an empirical relation for FWHM of PL, Delta E(p)(eV) = 1.15 x 10(-8)p(1/3). We also obtained an empirical relation for the band gap shrinkage, Delta E-g in Zn doped GaAs as a function of hole concentration. The value of Delta E-g(eV) = -2.75 x 10(-8)p(1/3), indicates a significant band gap shrinkage at high doping levels, These relations are considered to provide a useful tool to determine the hole concentration in Zn doped GaAs by low temperature PL measurement. The hole concentration increases with increasing AsH3 mole fraction and the main peak is shifted to a lower energy side. This can be explained also by the vacancy control model. As the hole concentration is increased above 3.8 x 10(18) cm(-3), a shoulder peak separated from the main peak was observed in the PL spectra and disappears at higher concentrations. (C) 1997 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Silane (SiH4) was used as an n-type dopant in GaAs grown by low pressure metalorganic vapor phase epitaxy using trimethylgallium (TMGa) and arsine (AsH3) as source materials. The electron carrier concentrations and silicon (Si) incorporation efficiency are studied by using Hall effect, electrochemical capacitance voltage profiler and low temperature photoluminescence (LTPL) spectroscopy. The influence of growth parameters, such as SiH4 mole fraction, growth temperature, TMGa and AsH3 mole fractions on the Si incorporation efficiency have been studied. The electron concentration increases with increasing SIH4 mole fraction, growth temperature, and decreases with increasing TMGa and AsH3 mole fractions. The decrease in electron concentration with increasing TMGa can be explained by vacancy control model. The PL experiments were carried out as a function of electron concentration (10(17) - 1.5 x 10(18) cm(-3)). The PL main peak shifts to higher energy and the full width at half maximum (FWHM) increases with increasing electron concentrations. We have obtained an empirical relation for FWHM of PL, Delta E(n) (eV) = 1.4 x 10(-8) n(1/3). We also obtained an empirical relation for the band gap shrinkage, Delta E-g in Si-doped GaAs as a function of electron concentration. The value of Delta E-g (eV) = -2.75 x 10(-8) n(1/3), indicates a significant band gap shrinkage at high doping levels. These relations are considered to provide a useful tool to determine the electron concentration in Si-doped GaAs by low temperature PL measurement. The electron concentration decreases with increasing TMGa and AsH3 mole fractions and the main peak shifts to the lower energy side. The peak shifts towards the lower energy side with increasing TMGa variation can also be explained by vacancy control model. (C) 1999 Elsevier Science S.A. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Single crystal (100) wafers of n-InSb were implanted with 50 MeV Li3+ ions at various fluences ranging from 10(10) to 10(14) ions/cm(2) at room temperature. Investigations of the optical, electrical, and structural properties of the as-grown, irradiated, annealed wafers were carried out by infrared and Raman spectroscopies, Hall measurements, and high resolution x-ray diffraction (HRXRD). In the case of samples irradiated with an ion fluence of 1.6x10(14) ions/cm(2), electrical measurements at 80 K reveal that there is a decrease in carrier concentration from 8.5x10(15) (for unirradiated) to 1.1x10(15)/cm(3) and an increase in mobility from 5.4x10(4) to 1.67x10(5) cm(2)/V s. The change in carrier concentration is attributed to the creation of electron trap centers induced by ion beam irradiation and the increase in mobility to the formation of electrical inactive complexes. Nevertheless, even with the irradiation at 1.6x10(14) ions/cm(2) fluence the crystalline quality remains largely unaffected, as is seen from HRXRD and Raman studies. (C) 2001 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Temperature dependence of the energy gap and free carrier absorption in a high-quality InAs0.05Sb0.95 single crystal was studied between 90 K and 430 K through the absorption spectra. At this alloy concentration, the room-temperature energy gap was measured to be 0.15 eV. Varshni- and the Bose–Einstein-type fit parameters were obtained from the measured temperature dependence of the energy gap, and the latter gave the zero-temperature gap to be 0.214 eV. It was found that although Weider’s empirical formula for the dependence of the energy gap on temperature and the alloy concentration agrees with the value of the gap at room temperature, it is inaccurate in describing its temperature dependence. From the free carrier absorption measurements, the phonon limited cross section of 7.35×10−16 cm2 at 15 μm was deduced at room temperature.