973 resultados para Cardiopulmonary exercise testing
Resumo:
Rationale Mannitol dry powder (MDP) challenge is an indirect bronchial provocation test, which is well studied in adults but not established for children. Objective We compared feasibility, validity, and clinical significance of MDP challenge with exercise testing in children in a clinical setting. Methods Children aged 6–16 years, referred to two respiratory outpatient clinics for possible asthma diagnosis, underwent standardized exercise testing followed within a week by an MDP challenge (Aridol™, Pharmaxis, Australia). Agreement between the two challenge tests using Cohen's kappa and receiving operating characteristic (ROC) curves was compared. Results One hundred eleven children performed both challenge tests. Twelve children were excluded due to exhaustion or insufficient cooperation (11 at the exercise test, 1 at the MDP challenge), leaving 99 children (mean ± SD age 11.5 ± 2.7 years) for analysis. MDP tests were well accepted, with minor side effects and a shorter duration than exercise tests. The MDP challenge was positive in 29 children (29%), the exercise test in 21 (21%). Both tests were concordant in 83 children (84%), with moderate agreement (κ = 0.58, 95% CI 0.39–0.76). Positive and negative predictive values of the MDP challenge for exercise-induced bronchoconstriction were 68% and 89%. The overall ability of MDP challenge to separate children with or without positive exercise tests was good (area under the ROC curve 0.83). Conclusions MDP challenge test is feasible in children and is a suitable alternative for bronchial challenge testing in childhood. Pediatr. Pulmonol. 2011; 46:842–848. © 2011 Wiley-Liss, Inc.
Resumo:
Over the past decades, major progress in patient selection, surgical techniques and anaesthetic management have largely contributed to improved outcome in lung cancer surgery. The purpose of this study was to identify predictors of post-operative cardiopulmonary morbidity in patients with a forced expiratory volume in 1 s <80% predicted, who underwent cardiopulmonary exercise testing (CPET). In this observational study, 210 consecutive patients with lung cancer underwent CPET with completed data over a 9-yr period (2001-2009). Cardiopulmonary complications occurred in 46 (22%) patients, including four (1.9%) deaths. On logistic regression analysis, peak oxygen uptake (peak V'(O₂) and anaesthesia duration were independent risk factors of both cardiovascular and pulmonary complications; age and the extent of lung resection were additional predictors of cardiovascular complications, whereas tidal volume during one-lung ventilation was a predictor of pulmonary complications. Compared with patients with peak V'(O₂) >17 mL·kg⁻¹·min⁻¹, those with a peak V'(O₂) <10 mL·kg⁻¹·min⁻¹ had a four-fold higher incidence of cardiac and pulmonary morbidity. Our data support the use of pre-operative CPET and the application of an intra-operative protective ventilation strategy. Further studies should evaluate whether pre-operative physical training can improve post-operative outcome.
Resumo:
The clinical value of early exercise stress testing (EST) after coronary stenting to predict long-term clinical outcomes is unknown. Of 1,000 unselected patients who underwent coronary stenting, 446 random patients underwent early EST the day after intervention. Clinical long-term outcomes (41 +/- 20 months) were correlated with normal (n = 314 [70%]) or positive (n = 102 [23%]) EST results. Patients with inconclusive test results (n = 30 [7%]) were excluded from the analysis. Overall mortality was significantly higher in patients with positive EST results (9.3% vs 3.9%, p = 0.04). Major adverse cardiac events and cardiac mortality also tended to be higher in patients with positive stress test results (45.4% vs 35.4%, p = 0.08, and 4.1% vs 1.1%, p = 0.05, respectively). Patients with the combination of positive stress test results and incomplete revascularization appeared to be the group at highest risk for major adverse cardiac events (47.1% vs 33.3% for patients with normal stress test results and complete revascularization, p = NS). Negative stress test results reduced (odds ratio 0.329, 95% confidence interval 0.120 to 0.905, p = 0.031) and a lower ejection fraction increased (odds ratio 0.942, 95% confidence interval 0.897 to 0.989, p = 0.017) the risk for death. In conclusion, an early stress test after coronary stenting provides important prognostic information. Positive stress test results, especially in combination with incomplete revascularization, are associated with higher mortality, a trend toward more repeat revascularization procedures, and higher risk for major adverse cardiac events.
Resumo:
OBJECTIVE High altitude-related hypoxia induces pulmonary vasoconstriction. In Fontan patients without a contractile subpulmonary ventricle, an increase in pulmonary artery pressure is expected to decrease circulatory output and reduce exercise capacity. This study investigates the direct effects of short-term high altitude exposure on pulmonary blood flow (PBF) and exercise capacity in Fontan patients. METHODS 16 adult Fontan patients (mean age 28±7 years, 56% female) and 14 matched controls underwent cardiopulmonary exercise testing with measurement of PBF with a gas rebreathing system at 540 m (low altitude) and at 3454 m (high altitude) within 12 weeks. RESULTS PBF at rest and at exercise was higher in controls than in Fontan patients, both at low and high altitude. PBF increased twofold in Fontan patients and 2.8-fold in the control group during submaximal exercise, with no significant difference between low and high altitude (p=0.290). A reduction in peak oxygen uptake at high compared with low altitude was observed in Fontan patients (22.8±5.1 and 20.5±3.8 mL/min/kg, p<0.001) and the control group (35.0±7.4 and 29.1±6.5 mL/min/kg, p<0.001). The reduction in exercise capacity was less pronounced in Fontan patients compared with controls (9±12% vs 17±8%, p=0.005). No major adverse clinical event was observed. CONCLUSIONS Short-term high altitude exposure has no negative impact on PBF and exercise capacity in Fontan patients when compared with controls, and was clinically well tolerated. TRIAL REGISTRATION NUMBER NCT02237274: Results.
Resumo:
Background Peripheral muscle strength and endurance are decreased in patients with chronic pulmonary diseases and seem to contribute to patients' exercise intolerance. However, the authors are not aware of any studies evaluating peripheral muscle function in children with asthma. It seems to be implied that children with asthma have lower aerobic fitness, but there are limited studies comparing the aerobic capacity of children with and without asthma. The present study aimed to evaluate muscle strength and endurance in children with persistent asthma and their association with aerobic capacity and inhaled corticosteroid consumption. Methods Forty children with mild persistent asthma (MPA) or severe persistent asthma (SPA) (N=20 each) and 20 children without asthma (control group) were evaluated. Upper (pectoralis and latissimus dorsi) and lower (quadriceps) muscle strength and endurance were assessed, and cardiopulmonary exercise testing was performed. Inhaled corticosteroid consumption during the last 6 and 24 months was also quantified. Results Children with SPA presented a reduction in peak oxygen consumption (VO(2)) (28.2 +/- 8.1 vs 34.7 +/- 6.9 ml/kg/min; p<0.01) and quadriceps endurance (43.1 +/- 6.7 vs 80.9 +/- 11.9 repetitions; p<0.05) compared with the control group, but not the MPA group (31.5 +/- 6.1 ml/kg/min and 56.7 +/- 47.7 repetitions respectively; p>0.05). Maximal upper and lower muscle strength was preserved in children with both mild and severe asthma (p>0.05). Finally, the authors observed that lower muscle endurance weakness was not associated with reductions in either peak VO(2) (r=0.22, p>0.05) or corticosteroid consumption (r=-0.31, p>0.05) in children with asthma. Conclusion The findings suggest that cardiopulmonary exercise and lower limb muscle endurance should be a priority during physical training programs for children with severe asthma.
Resumo:
MENDES, F. A. R., F. M. ALMEIDA, A. CUKIER, R. STELMACH, W. JACOB-FILHO, M. A. MARTINS, and C. R. F. CARVALHO. Effects of Aerobic Training on Airway Inflammation in Asthmatic Patients. Med. Sci. Sports Exerc., Vol. 43, No. 2, pp. 197-203, 2011. Purpose: There is evidence suggesting that physical activity has anti-inflammatory effects in many chronic diseases; however, the role of exercise in airway inflammation in asthma is poorly understood. We aimed to evaluate the effects of an aerobic training program on eosinophil inflammation (primary aim) and nitric oxide (secondary aim) in patients with moderate or severe persistent asthma. Methods: Sixty-eight patients randomly assigned to either control (CG) or aerobic training (TG) groups were studied during the period between medical consultations. Patients in the CG (educational program + breathing exercises; N = 34) and TG (educational program + breathing exercises + aerobic training; N = 34) were examined twice a week during a 3-month period. Before and after the intervention, patients underwent induced sputum, fractional exhaled nitric oxide (FeNO), pulmonary function, and cardiopulmonary exercise testing. Asthma symptom-free days were quantified monthly, and asthma exacerbation was monitored during 3 months of intervention. Results: At 3 months, decreases in the total and eosinophil cell counts in induced sputum (P = 0.004) and in the levels of FeNO (P = 0.009) were observed after intervention only in the TG. The number of asthma symptom-free days and (V) over dotO(2max) also significantly improved (P < 0.001), and lower asthma exacerbation occurred in the TG (P < 0.01). In addition, the TG presented a strong positive relationship between baseline FeNO and eosinophil counts as well as their improvement after training (r = 0.77 and r = 0.9, respectively). Conclusions: Aerobic training reduces sputum eosinophil and FeNO in patients with moderate or severe asthma, and these benefits were more significant in subjects with higher levels of inflammation. These results suggest that aerobic training might be useful as an adjuvant therapy in asthmatic patients under optimized medical treatment.
Resumo:
Artigo original Ergoespirometria
Resumo:
OBJECTIVE: We set out to evaluate whether changes in N-terminal pro-brain natriuretic peptide (proBNP) can predict changes in functional capacity, as determined by cardiopulmonary exercise testing (CPET), in patients with chronic heart failure (CHF) due to dilated cardiomyopathy (DCM). METHODS: We studied 37 patients with CHF due to DCM, 81% non-ischemic, 28 male, who performed symptom-limited treadmill CPET, with the modified Bruce protocol, in two consecutive evaluations, with determination of proBNP after 10 minutes rest prior to CPET. The time between evaluations was 9.6+/-5.5 months, and age at first evaluation was 41.1+/-13.9 years (21 to 67). RESULTS IN THE FIRST AND SECOND EVALUATIONS RESPECTIVELY WERE: NYHA functional class >II 51% and 16% (p<0.001), sinus rhythm 89% and 86.5% (NS), left ventricular ejection fraction 24.9+/-8.9% and 26.6+/-8.6% (NS), creatinine 1.03+/-0.25 and 1.09+/-0.42 mg/dl (NS), taking ACE inhibitors or ARBs 94.5% and 100% (NS), beta-blockers 73% and 97.3% (p<0.001), and spironolactone 89% and 89% (NS). We analyzed the absolute and percentage variation (AV and PV) in peak oxygen uptake (pVO2--ml/kg/min) and proBNP (pg/ml) between the two evaluations. RESULTS: (1) pVO2 AV: -17.4 to 15.2 (1.9+/-5.7); pVO2 PV: -56.1 to 84% (11.0+/-25.2); proBNP AV: -12850 to 5983 (-778.4+/-3332.5); proBNP PV: -99.0 to 379.5% (-8.8+/-86.3); (2) The correlations obtained--r value and p value [r (p)]--are shown in the table below; (3) We considered that a coefficient of variation of pVO2 PV of >10% represented a significant change in functional capacity. On ROC curve analysis, a proBNP PV value of 28% showed 80% sensitivity and 79% specificity for pVO2 PV of >10% (AUC=0.876, p=0.01, 95% CI 0.75 to 0.99). CONCLUSIONS: In patients with CHF due to DCM, changes in proBNP values correlate with variations in pVO2, as assessed by CPET. However, our results suggest that only a proBNP PV of >28% predicts a significant change in functional capacity.
Resumo:
INTRODUCTION: Low-dose dobutamine stress echocardiography is a common and useful technique to assess myocardial viability in patients with ischemic cardiomyopathy. OBJECTIVE: To evaluate the use of low-dose dobutamine stress echocardiography in determining the functional status of patients with idiopathic dilated cardiomyopathy (IDCM). METHODS: Prospective study of 28 patients with IDCM by transthoracic echocardiography (2D), low-dose dobutamine stress echocardiography, cardiopulmonary exercise testing (CPET) and measurement of pro-BNP. RESULTS: The mean age of the population was 50.3 +/- 11.5 years, 9 female and 19 male. Mean ejection fraction was 32.1 +/- 9.8%. All were in sinus rhythm. The following parameters were analyzed in 2D echocardiography and after dobutamine: dimensions of left atrium (LA) and of left ventricle in diastole and systole, shortening fraction (%), left ventricular end-diastolic (EDV) and end-systolic volumes (ESV), ejection fraction (EF), and mitral inflow (E, A, E/A ratio and deceleration time). In CPET, we considered the following parameters: peak VO2 and % maximal peak VO2 attained. We compared echo results with CPET. There was a correlation between age and peak VO2 (r = -0.38 with p = 0.049). In 2D echo, there was a correlation between baseline EF and LA dimensions and peak VO2 (r = 0.45 / p = 0.004 and r = -0.49 / p = 0.014, respectively). After dobutamine echo, there was a correlation between some echo parameters and peak VO2: EF - r = 0.59 / p = 0.001, LA dimensions - r = 0.56 / p = 0.007, and ESV - r = -0.45 / p = 0.026. Percentage maximal peak VO2 attained correlated with LA dimensions measured in 2D echo and after dobutamine (r = -0.398 / p = 0.036 and r = -0.674 / p = 0.02 respectively) and EF after dobutamine (r = -0.389 / p = 0.04). The value of pro-BNP correlated with LA dimensions and baseline EF (r = 0.44 / p = 0.02 and r = -0.57 / p = 0.002, respectively), and the correlation was maintained after inotropic stimulation with dobutamine (r = 0.57 / p = 0.001 and r = -0.55 / p = 0.0039). CONCLUSION: Low-dose dobutamine stress echocardiography showed stronger correlations with cardiopulmonary exercise testing than the parameters evaluated by conventional echocardiography and could be used to determine the functional status of patients with dilated cardiomyopathy; patients with greater ejection fraction after inotropic stimulation had better cardiopulmonary tests.
Resumo:
Cardiopulmonary exercise testing (CPET) is an objective method for assessment of functional capacity and for prognostic stratification of patients with chronic heart failure (CHF). In this study, we analyzed the prognostic value of a recently described CPET-derived parameter, the minute ventilation to carbon dioxide production slope normalized for peak oxygen consumption (VE/VCO2 slope/pVO2). METHODS: We prospectively studied 157 patients with stable CHF and dilated cardiomyopathy who performed maximal CPET using the modified Bruce protocol. The prognostic value of VE/VCO2 slope/pVO2 was determined and compared with traditional CPET parameters. RESULTS: During follow-up 37 patients died and 12 were transplanted. Mean follow-up in surviving patients was 29.7 months (12-36). Cox multivariate analysis revealed that VE/VCO2 slope/pVO2 had the greatest prognostic power of all the parameters studied. A VE/VCO2 slope/pVO2 of > or = 2.2 signaled cases at higher risk. CONCLUSION: Normalization of the ventilatory response to exercise for peak oxygen consumption appears to increase the prognostic value of CPET in patients with CHF.
Resumo:
OBJECTIVE: To differentiate the nature of functional cardiorespiratory limitations during exercise in individuals with chronic obstructive pulmonary disease (COPD) or congestive heart failure (CHF) and to determine indicators that may help their classifications. METHODS: The study comprised 40 patients: 23 with COPD and 17 with CHF. All individuals underwent maximal cardiopulmonary exercise testing on a treadmill. RESULTS: The values of peak gas exchange ratio (R peak), peak carbon dioxide production (VCO2 peak), and peak oxygen ventilatory equivalent (V E O2 peak) were higher in the patients with CHF than in those with COPD, and, therefore, those were the variables that characterized the differences between the groups. For group classification, the differentiating functions with the R peak, VCO2 peak (L/min), and V E O2 peak variables were used as follows: group COPD: - 44.886 + 78.832 x R peak + 5.442 x VCO2 peak + 0.336 x V E O2 peak; group CHF: - 69.251 + 89.740 x R peak + 8.461 x VCO2 peak + 0.574 x V E O2 peak. The differentiating function, whose result is greater, correctly classifies the patient's group as 90%. CONCLUSION: The R peak, VCO2 peak, and V E O2 peak values may be used to identify the cause of the functional cardiorespiratory limitations in patients with COPD and CHF.
Resumo:
Background: The equations predicting maximal oxygen uptake (VO2max or peak) presently in use in cardiopulmonary exercise testing (CPET) softwares in Brazil have not been adequately validated. These equations are very important for the diagnostic capacity of this method. Objective: Build and validate a Brazilian Equation (BE) for prediction of VO2peak in comparison to the equation cited by Jones (JE) and the Wasserman algorithm (WA). Methods: Treadmill evaluation was performed on 3119 individuals with CPET (breath by breath). The construction group (CG) of the equation consisted of 2495 healthy participants. The other 624 individuals were allocated to the external validation group (EVG). At the BE (derived from a multivariate regression model), age, gender, body mass index (BMI) and physical activity level were considered. The same equation was also tested in the EVG. Dispersion graphs and Bland-Altman analyses were built. Results: In the CG, the mean age was 42.6 years, 51.5% were male, the average BMI was 27.2, and the physical activity distribution level was: 51.3% sedentary, 44.4% active and 4.3% athletes. An optimal correlation between the BE and the CPET measured VO2peak was observed (0.807). On the other hand, difference came up between the average VO2peak expected by the JE and WA and the CPET measured VO2peak, as well as the one gotten from the BE (p = 0.001). Conclusion: BE presents VO2peak values close to those directly measured by CPET, while Jones and Wasserman differ significantly from the real VO2peak.
Resumo:
Background:Circulatory power (CP) and ventilatory power (VP) are indices that have been used for the clinical evaluation of patients with heart failure; however, no study has evaluated these indices in patients with coronary artery disease (CAD) without heart failure.Objective:To characterize both indices in patients with CAD compared with healthy controls.Methods:Eighty-seven men [CAD group = 42 subjects and healthy control group (CG) = 45 subjects] aged 40–65 years were included. Cardiopulmonary exercise testing was performed on a treadmill and the following parameters were measured: 1) peak oxygen consumption (VO2), 2) peak heart rate (HR), 3) peak blood pressure (BP), 4) peak rate-pressure product (peak systolic HR x peak BP), 5) peak oxygen pulse (peak VO2/peak HR), 6) oxygen uptake efficiency (OUES), 7) carbon dioxide production efficiency (minute ventilation/carbon dioxide production slope), 8) CP (peak VO2 x peak systolic BP) and 9) VP (peak systolic BP/carbon dioxide production efficiency).Results:The CAD group had significantly lower values for peak VO2 (p < 0.001), peak HR (p < 0.001), peak systolic BP (p < 0.001), peak rate-pressure product (p < 0.001), peak oxygen pulse (p = 0.008), OUES (p < 0.001), CP (p < 0.001), and VP (p < 0.001) and significantly higher values for peak diastolic BP (p = 0.004) and carbon dioxide production efficiency (p < 0.001) compared with CG. Stepwise regression analysis showed that CP was influenced by group (R2 = 0.44, p < 0.001) and VP was influenced by both group and number of vessels with stenosis after treatment (interaction effects: R2 = 0.46, p < 0.001).Conclusion:The indices CP and VP were lower in men with CAD than healthy controls.