981 resultados para Carbohydrate-binding proteins
Resumo:
ZFP36L1 and ZFP36L2 are RNA-binding proteins (RBPs) that interact with AU-rich elements in the 3' untranslated region of mRNA, which leads to mRNA degradation and translational repression. Here we show that mice that lacked ZFP36L1 and ZFP36L2 during thymopoiesis developed a T cell acute lymphoblastic leukemia (T-ALL) dependent on the oncogenic transcription factor Notch1. Before the onset of T-ALL, thymic development was perturbed, with accumulation of cells that had passed through the beta-selection checkpoint without first expressing the T cell antigen receptor beta-chain (TCRbeta). Notch1 expression was higher in untransformed thymocytes in the absence of ZFP36L1 and ZFP36L2. Both RBPs interacted with evolutionarily conserved AU-rich elements in the 3' untranslated region of Notch1 and suppressed its expression. Our data establish a role for ZFP36L1 and ZFP36L2 during thymocyte development and in the prevention of malignant transformation.
Resumo:
The human primary auditory cortex (AI) is surrounded by several other auditory areas, which can be identified by cyto-, myelo- and chemoarchitectonic criteria. We report here on the pattern of calcium-binding protein immunoreactivity within these areas. The supratemporal regions of four normal human brains (eight hemispheres) were processed histologically, and serial sections were stained for parvalbumin, calretinin or calbindin. Each calcium-binding protein yielded a specific pattern of labelling, which differed between auditory areas. In AI, defined as area TC [see C. von Economo and L. Horn (1930) Z. Ges. Neurol. Psychiatr.,130, 678-757], parvalbumin labelling was dark in layer IV; several parvalbumin-positive multipolar neurons were distributed in layers III and IV. Calbindin yielded dark labelling in layers I-III and V; it revealed numerous multipolar and pyramidal neurons in layers II and III. Calretinin labelling was lighter than that of parvalbumin or calbindin in AI; calretinin-positive bipolar and bitufted neurons were present in supragranular layers. In non-primary auditory areas, the intensity of labelling tended to become progressively lighter while moving away from AI, with qualitative differences between the cytoarchitectonically defined areas. In analogy to non-human primates, our results suggest differences in intrinsic organization between auditory areas that are compatible with parallel and hierarchical processing of auditory information.
Resumo:
Abstract Telomeres, the natural ends of chromosomes, need to be protected from chromosome end fusions, aberrant homologous recombination and degradation. In humans, chromosome ends are specified through arrays of tandemly repeated 5'-TTAGGG-3' hexamers, ending in a 3' overhang. A complex formed by the six proteins TRF1, TRF2, hRap1, TIN2, TPP1 and POT1 specifically assocìates with and protects telomeres. Telomeres are maintained by semiconservative DNA replication and by a specialized reverse transcriptase, telomerase, that carries an RNA subunit which templates new telomeric repeat synthesis. The telomeric single stranded (ss) DNA binding protein POT1 protects the telomeric 3' overhang and modulates telomerase-mediated telomere elongation. It is possible that POT1 also influences DNA synthesis during semiconservative DNA replication, which is initiated by the DNA polymerase alpha-primase complex. The heterotrimeric ss DNA-binding protein RPA plays essential roles during DNA replication. RPA binds to ss DNA with high affinity in order to stabilize ss DNA and facilitate nascent strand synthesis at the replication fork. Here we investigate how the two proteins RPA and POT1 contribute to telomere maintenance by regulating semi-conservative DNA replication and telomerase. Using chromatin immunoprecipitation experiments, we show that RPA associates with telomeres during S-phase. Analysis of telomere structure in cells shRNA-depleted for RPA and POT1 reveals that loss of RPA and POT1 causes exposure of single-stranded DNA at telomeres, suggestive of incomplete DNA replication. Biochemical experiments using purified recombinant POT1 and RPA show that saturating telomeric oligonucleotides with POT1 or RPA reduces the primase activity of the DNA polymerase alpha-primase complex and the overall activity of telomerase. POT1 and RPA also increase the primer extension by DNA polymerase alpha-primase complex and the processivity of telomerase under certain conditions, although POT1 increases the activities to a greater extent than RPA. We propose that POT1 is required for proper replication of the lagging strand of telomeres and that some phenotypes observed in POT1-depleted cells may stern from incomplete DNA replication rather than de-protection of the single-stranded overhang. Résumé Les télomères, les extrémités normales des chromosomes linéaires, doivent être protégés des fusions chromosomiques, d'événements de recombinaison homologue aberrants et de phénomènes de dégradation. Chez l'Homme, les extrémités des chromosomes sont constitués d'ADN double brin répétitif de séquence 5'-TTAGGG-3', d'une extension simple brin 3' sortante et d'un complexe protéique formé des six facteurs TRF1, TRF2, hRap1, TIN2, TPP1 et POT1 qui, s'associant à cette séquence, protègent l'ADN télomèrique. Les télomères sont maintenus par la télomérase, une transcriptase inverse capable d'allonger l'extension 3' sortante télomérique. POT1 lie l'ADN simple brin télomérique et module l'élongation des télomères par la télomérase. POT1 pourrait en théorie également influencer la réplication semi-conservative de l'ADN. L'ADN-polymérase Pal alpha-primase amorce et initie la synthèse d'ADN. Pendant la réplication, l'ADN simple brin est stabilisé par RPA, un complexe hétérotrimèrique qui lie l'ADN simple brin. RPA facilite la synthèse du brin naissant à la fourche de réplication. Ici nous avons étudié comment ces deux protéines qui lient l'ADN simple brin, RPA et POT1, régulent la réplication des télomères par la télomérase et la machinerie classique de réplication de l'ADN. Par immunoprécipitation de chromatine (ChIP), nous montrons que RPA est localisé aux télomères lors de la phase S du cycle cellulaire. De plus, l'analyse de la structure des télomeres indique que !a perte de RPA ou de POT1 conduit à l'apparition d'ADN simple brin télomérique, suggérant une réplication incomplète de l'ADN télomérique in vivo. Par une approche complémentaire biochimique utilisant les protéines POT1 et RPA recombinantes purifiées, nous montrons également que la liaison de POT1 ou de RPA à des oligonucléotides télomériques bloque l'activité primase du complexe polymérase alpha/primase et réduit l'activité télomérase sur ces substrats. En revanche, leur liaison augmente l'activité ADN-polymérase du complexe polymérase alpha/primase, ainsi que fa processivité de la télomérase dans certaines conditions, POT1 étant le plus efficace des deux facteurs. Nous proposons que POT1 est nécessaire à la réplication du brin retardé au niveau des télomères, ce qui suggère que certains phénotypes des cellules déplétés en POT1 puissent résulter d'une réplication incomplète de l'ADN télémétrique plutôt que d'une déprotection de l'extrémité sortante des télomères.
Resumo:
Bacterial cell-wall-associated fibronectin binding proteins A and B (FnBPA and FnBPB) form bonds with host fibronectin. This binding reaction is often the initial step in prosthetic device infections. Atomic force microscopy was used to evaluate binding interactions between a fibronectin-coated probe and laboratory-derived Staphylococcus aureus that are (i) defective in both FnBPA and FnBPB (fnbA fnbB double mutant, DU5883), (ii) capable of expressing only FnBPA (fnbA fnbB double mutant complemented with pFNBA4), or (iii) capable of expressing only FnBPB (fnbA fnbB double mutant complemented with pFNBB4). These experiments were repeated using Lactococcus lactis constructs expressing fnbA and fnbB genes from S. aureus. A distinct force signature was observed for those bacteria that expressed FnBPA or FnBPB. Analysis of this force signature with the biomechanical wormlike chain model suggests that parallel bonds form between fibronectin and FnBPs on a bacterium. The strength and covalence of bonds were evaluated via nonlinear regression of force profiles. Binding events were more frequent (p < 0.01) for S. aureus expressing FnBPA or FnBPB than for the S. aureus double mutant. The binding force, frequency, and profile were similar between the FnBPA and FnBPB expressing strains of S. aureus. The absence of both FnBPs from the surface of S. aureus removed its ability to form a detectable bond with fibronectin. By contrast, ectopic expression of FnBPA or FnBPB on the surface of L. lactis conferred fibronectin binding characteristics similar to those of S. aureus. These measurements demonstrate that fibronectin-binding adhesins FnBPA and FnBPB are necessary and sufficient for the binding of S. aureus to prosthetic devices that are coated with host fibronectin.
Resumo:
High-molecular-weight (HMW) penicillin-binding proteins (PBPs) are divided into class A and class B PBPs, which are bifunctional transpeptidases/transglycosylases and monofunctional transpeptidases, respectively. We determined the sequences for the HMW PBP genes of Streptococcus gordonii, a gingivo-dental commensal related to Streptococcus pneumoniae. Five HMW PBPs were identified, including three class A (PBPs 1A, 1B, and 2A) and two class B (PBPs 2B and 2X) PBPs, by homology with those of S. pneumoniae and by radiolabeling with [3H]penicillin. Single and double deletions of each of them were achieved by allelic replacement. All could be deleted, except for PBP 2X, which was essential. Morphological alterations occurred after deletion of PBP 1A (lozenge shape), PBP 2A (separation defect and chaining), and PBP 2B (aberrant septation and premature lysis) but not PBP 1B. The muropeptide cross-link patterns remained similar in all strains, indicating that cross-linkage for one missing PBP could be replaced by others. However, PBP 1A mutants presented shorter glycan chains (by 30%) and a relative decrease (25%) in one monomer stem peptide. Growth rate and viability under aeration, hyperosmolarity, and penicillin exposure were affected primarily in PBP 2B-deleted mutants. In contrast, chain-forming PBP 2A-deleted mutants withstood better aeration, probably because they formed clusters that impaired oxygen diffusion. Double deletion could be generated with any PBP combination and resulted in more-altered mutants. Thus, single deletion of four of the five HMW genes had a detectable effect on the bacterial morphology and/or physiology, and only PBP 1B seemed redundant a priori.
Resumo:
Surface molecules of Staphylococcus aureus are involved in the colonization of vascular endothelium which is a crucial primary event in the pathogenesis of infective endocarditis (IE). The ability of these molecules to also launch endothelial procoagulant and proinflammatory responses, which characterize IE, is not known. In the present study we investigated the individual capacities of three prominent S. aureus surface molecules; fibronectin-binding protein A (FnBPA) and B (FnBPB) and clumping factor A (ClfA), to promote bacterial adherence to cultured human endothelial cells (ECs) and to activate phenotypic and functional changes in these ECs. Non-invasive surrogate bacterium Lactococcus lactis, which, by gene transfer, expressed staphylococcal FnBPA, FnBPB or ClfA molecules were used. Infection of ECs increased 50- to 100-fold with FnBPA- or FnBPB-positive recombinant lactococci. This coincided with EC activation, interleukin-8 secretion and surface expression of ICAM-1 and VCAM-1 and concomitant monocyte adhesion. Infection with ClfA-positive lactococci did not activate EC. FnBPA-positive L. lactis also induced a prominent tissue factor-dependent endothelial coagulation response that was intensified by cell-bound monocytes. Thus S. aureus FnBPs, but not ClfA, confer invasiveness and pathogenicity to non-pathogenic L. lactis organisms indicating that bacterium-EC interactions mediated by these adhesins are sufficient to evoke inflammation as well as procoagulant activity at infected endovascular sites.
Resumo:
The subdivisions of human inferior colliculus are currently based on Golgi and Nissl-stained preparations. We have investigated the distribution of calcium-binding protein immunoreactivity in the human inferior colliculus and found complementary or mutually exclusive localisations of parvalbumin versus calbindin D-28k and calretinin staining. The central nucleus of the inferior colliculus but not the surrounding regions contained parvalbumin-positive neuronal somata and fibres. Calbindin-positive neurons and fibres were concentrated in the dorsal aspect of the central nucleus and in structures surrounding it: the dorsal cortex, the lateral lemniscus, the ventrolateral nucleus, and the intercollicular region. In the dorsal cortex, labelling of calbindin and calretinin revealed four distinct layers.Thus, calcium-binding protein reactivity reveals in the human inferior colliculus distinct neuronal populations that are anatomically segregated. The different calcium-binding protein-defined subdivisions may belong to parallel auditory pathways that were previously demonstrated in non-human primates, and they may constitute a first indication of parallel processing in human subcortical auditory structures.
Resumo:
The present study describes the postnatal expression of calbindin, calretinin and parvalbumin and glutamic acid decarboxylase (GAD) and microtubule-associated protein 2 (MAP2) in organotypic monocultures of rat dorsal thalamus compared to the thalamus in vivo. Cultures were maintained for up to 7 weeks. Cortex-conditioned medium improved the survival of thalamic cultures. MAP2-immunoreactive material was present in somata and dendrites of small and large-sized neurons throughout the cultures. Parvalbumin immunoreactivity was present in larger multipolar or bitufted neurons along the edge of a culture. These neurons also displayed strong parvalbumin mRNA and GAD mRNA expression, and GABA immunoreactivity. They likely corresponded to cells of the nucleus reticularis thalami. Parvalbumin mRNA, but neither parvalbumin protein nor GAD mRNA, was expressed in neurons with large somata within the explant. They likely represented relay cells. GAD mRNA, but not parvalbumin mRNA, was expressed in small neurons within the explants. Small neurons also displayed calbindin- and calretinin-immunoreactivity. The small neurons likely represented local circuit neurons. The time course of expression of the calcium-binding proteins revealed that all were present at birth with the predicted molecular weights. A low, but constant parvalbumin expression was observed in vitro without the developmental increase seen in vivo, which most likely represented parvalbumin from afferent sources. In contrast, the explantation transiently downregulated the calretinin and calbindin expression, but the neurons recovered the expression after 14 and 21 days, respectively. In conclusion, thalamic monocultures older than three weeks represent a stable neuronal network containing well differentiated neurons of the nucleus reticularis thalami, relay cells and local circuit neurons.
Resumo:
The roles of peroxisome proliferator-activated receptors (PPARs) and CCAAT/enhancer-binding proteins (C/EBPs) in keratinocyte and sebocyte differentiation suggest that both families of transcription factors closely interact in the skin. Initial characterization of the mouse PPARbeta promoter revealed an AP-1 site that is crucial for the regulation of PPARbeta expression in response to inflammatory cytokines in the skin. We now present evidence for a novel regulatory mechanism of the expression of the PPARbeta gene by which two members of the C/EBP family of transcription factors inhibit its basal promoter activity in mouse keratinocytes. We first demonstrate that C/EBPalpha and C/EBPbeta, but not C/EBPdelta, inhibit the expression of PPARbeta through the recruitment of a transcriptional repressor complex containing HDAC-1 to a specific C/EBP binding site on the PPARbeta promoter. Consistent with this repression, the expression patterns of PPARbeta and C/EBPs are mutually exclusive in keratinocytes of the interfollicular epidermis and hair follicles in mouse developing skin. This work reveals the importance of the regulatory interplay between PPARbeta and C/EBP transcription factors in the control of proliferation and differentiation in this organ. Such insights are crucial for the understanding of the molecular control regulating the balance between proliferation and differentiation in many cell types including keratinocytes.
Resumo:
Staphylococcus aureus invasion of mammalian cells, including epithelial, endothelial, and fibroblastic cells, critically depends on fibronectin bridging between S. aureus fibronectin-binding proteins (FnBPs) and the host fibronectin receptor integrin alpha(5)beta(1) (B. Sinha et al., Cell. Microbiol. 1:101-117, 1999). However, it is unknown whether this mechanism is sufficient for S. aureus invasion. To address this question, various S. aureus adhesins (FnBPA, FnBPB, and clumping factor [ClfA]) were expressed in Staphylococcus carnosus and Lactococcus lactis subsp. cremoris. Both noninvasive gram-positive microorganisms are genetically distinct from S. aureus, lack any known S. aureus surface protein, and do not bind fibronectin. Transformants of S. carnosus and L. lactis harboring plasmids coding for various S. aureus surface proteins (FnBPA, FnBPB, and ClfA) functionally expressed adhesins (as determined by bacterial clumping in plasma, specific latex agglutination, Western ligand blotting, and binding to immobilized and soluble fibronectin). FnBPA or FnBPB but not of ClfA conferred invasiveness to S. carnosus and L. lactis. Invasion of 293 cells by transformants was comparable to that of strongly invasive S. aureus strain Cowan 1. Binding of soluble and immobilized fibronectin paralleled invasiveness, demonstrating that the amount of accessible surface FnBPs is rate limiting. Thus, S. aureus FnBPs confer invasiveness to noninvasive, apathogenic gram-positive cocci. Furthermore, FnBP-coated polystyrene beads were internalized by 293 cells, demonstrating that FnBPs are sufficient for invasion of host cells without the need for (S. aureus-specific) coreceptors.
Resumo:
We describe the odorant binding proteins (OBPs) of the red imported fire ant, Solenopsis invicta, obtained from analyses of an EST library and separate 454 sequencing runs of two normalized cDNA libraries. We identified a total of 18 putative functional OBPs in this ant. A third of the fire ant OBPs are orthologs to honey bee OBPs. Another third of the OBPs belong to a lineage-specific expansion, which is a common feature of insect OBP evolution. Like other OBPs, the different fire ant OBPs share little sequence similarity (∼ 20%), rendering evolutionary analyses difficult. We discuss the resulting problems with sequence alignment, phylogenetic analysis, and tests of selection. As previously suggested, our results underscore the importance for careful exploration of the sensitivity to the effects of alignment methods for data comprising widely divergent sequences.
Resumo:
Lipophilic compounds such as retinoic acid and long-chain fatty acids regulate gene transcription by activating nuclear receptors such as retinoic acid receptors (RARs) and peroxisome proliferator-activated receptors (PPARs). These compounds also bind in cells to members of the family of intracellular lipid binding proteins, which includes cellular retinoic acid-binding proteins (CRABPs) and fatty acid binding proteins (FABPs). We previously reported that CRABP-II enhances the transcriptional activity of RAR by directly targeting retinoic acid to the receptor. Here, potential functional cooperation between FABPs and PPARs in regulating the transcriptional activities of their common ligands was investigated. We show that adipocyte FABP and keratinocyte FABP (A-FABP and K-FABP, respectively) selectively enhance the activities of PPARgamma and PPARbeta, respectively, and that these FABPs massively relocate to the nucleus in response to selective ligands for the PPAR isotype which they activate. We show further that A-FABP and K-FABP interact directly with PPARgamma and PPARbeta and that they do so in a receptor- and ligand-selective manner. Finally, the data demonstrate that the presence of high levels of K-FABP in keratinocytes is essential for PPARbeta-mediated induction of differentiation of these cells. Taken together, the data establish that A-FABP and K-FABP govern the transcriptional activities of their ligands by targeting them to cognate PPARs in the nucleus, thereby enabling PPARs to exert their biological functions.
Resumo:
Pheromones form an essential chemical language of intraspecific communication in many animals. How olfactory systems recognize pheromonal signals with both sensitivity and specificity is not well understood. An important in vivo paradigm for this process is the detection mechanism of the sex pheromone (Z)-11-octadecenyl acetate (cis-vaccenyl acetate [cVA]) in Drosophila melanogaster. cVA-evoked neuronal activation requires a secreted odorant binding protein, LUSH, the CD36-related transmembrane protein SNMP, and the odorant receptor OR67d. Crystallographic analysis has revealed that cVA-bound LUSH is conformationally distinct from apo (unliganded) LUSH. Recombinantly expressed mutant versions of LUSH predicted to enhance or diminish these structural changes produce corresponding alterations in spontaneous and/or cVA-evoked activity when infused into olfactory sensilla, leading to a model in which the ligand for pheromone receptors is not free cVA, but LUSH that is "conformationally activated" upon cVA binding. Here we present evidence that contradicts this model. First, we demonstrate that the same LUSH mutants expressed transgenically affect neither basal nor pheromone-evoked activity. Second, we compare the structures of apo LUSH, cVA/LUSH, and complexes of LUSH with non-pheromonal ligands and find no conformational property of cVA/LUSH that can explain its proposed unique activated state. Finally, we show that high concentrations of cVA can induce neuronal activity in the absence of LUSH, but not SNMP or OR67d. Our findings are not consistent with the model that the cVA/LUSH complex acts as the pheromone ligand, and suggest that pheromone molecules alone directly activate neuronal receptors.
Resumo:
UNLABELLED: NYVAC, a highly attenuated, replication-restricted poxvirus, is a safe and immunogenic vaccine vector. Deletion of immune evasion genes from the poxvirus genome is an attractive strategy for improving the immunogenic properties of poxviruses. Using systems biology approaches, we describe herein the enhanced immunological profile of NYVAC vectors expressing the HIV-1 clade C env, gag, pol, and nef genes (NYVAC-C) with single or double deletions of genes encoding type I (ΔB19R) or type II (ΔB8R) interferon (IFN)-binding proteins. Transcriptomic analyses of human monocytes infected with NYVAC-C, NYVAC-C with the B19R deletion (NYVAC-C-ΔB19R), or NYVAC-C with B8R and B19R deletions (NYVAC-C-ΔB8RB19R) revealed a concerted upregulation of innate immune pathways (IFN-stimulated genes [ISGs]) of increasing magnitude with NYVAC-C-ΔB19R and NYVAC-C-ΔB8RB19R than with NYVAC-C. Deletion of B8R and B19R resulted in an enhanced activation of IRF3, IRF7, and STAT1 and the robust production of type I IFNs and of ISGs, whose expression was inhibited by anti-type I IFN antibodies. Interestingly, NYVAC-C-ΔB8RB19R induced the production of much higher levels of proinflammatory cytokines (tumor necrosis factor [TNF], interleukin-6 [IL-6], and IL-8) than NYVAC-C or NYVAC-C-ΔB19R as well as a strong inflammasome response (caspase-1 and IL-1β) in infected monocytes. Top network analyses showed that this broad response mediated by the deletion of B8R and B19R was organized around two upregulated gene expression nodes (TNF and IRF7). Consistent with these findings, monocytes infected with NYVAC-C-ΔB8RB19R induced a stronger type I IFN-dependent and IL-1-dependent allogeneic CD4(+) T cell response than monocytes infected with NYVAC-C or NYVAC-C-ΔB19R. Dual deletion of type I and type II IFN immune evasion genes in NYVAC markedly enhanced its immunogenic properties via its induction of the increased expression of type I IFNs and IL-1β and make it an attractive candidate HIV vaccine vector. IMPORTANCE: NYVAC is a replication-deficient poxvirus developed as a vaccine vector against HIV. NYVAC expresses several genes known to impair the host immune defenses by interfering with innate immune receptors, cytokines, or interferons. Given the crucial role played by interferons against viruses, we postulated that targeting the type I and type II decoy receptors used by poxvirus to subvert the host innate immune response would be an attractive approach to improve the immunogenicity of NYVAC vectors. Using systems biology approaches, we report that deletion of type I and type II IFN immune evasion genes in NYVAC poxvirus resulted in the robust expression of type I IFNs and interferon-stimulated genes (ISGs), a strong activation of the inflammasome, and upregulated expression of IL-1β and proinflammatory cytokines. Dual deletion of type I and type II IFN immune evasion genes in NYVAC poxvirus improves its immunogenic profile and makes it an attractive candidate HIV vaccine vector.