922 resultados para Carbohydrate physiology
Resumo:
Objective: Obesity associated with atypical antipsychotic medications is an important clinical issue for people with schizophrenia. The purpose of this project was to determine whether there were any differences in resting energy expenditure (REE) and respiratory quotient (RQ) between men with schizophrenia and controls. Method: Thirty-one men with schizophrenia were individually matched for age and relative body weight with healthy, sedentary controls. Deuterium dilution was used to determine total body water and subsequently fat-free mass (FFM). Indirect calorimetry using a Deltatrac metabolic cart was used to determine REE and RQ. Results: When corrected for FFM, there was no significant difference in REE between the groups. However, fasting RQ was significantly higher in the men with schizophrenia than the controls. Conclusion: Men with schizophrenia oxidised proportionally less fat and more carbohydrate under resting conditions than healthy controls. These differences in substrate utilisation at rest may be an important consideration in obesity in this clinical group.
Resumo:
BACKGROUND:Previous epidemiological investigations of associations between dietary glycemic intake and insulin resistance have used average daily measures of glycemic index (GI) and glycemic load (GL). We explored multiple and novel measures of dietary glycemic intake to determine which was most predictive of an association with insulin resistance.METHODS:Usual dietary intakes were assessed by diet history interview in women aged 42-81 years participating in the Longitudinal Assessment of Ageing in Women. Daily measures of dietary glycemic intake (n = 329) were carbohydrate, GI, GL, and GL per megacalorie (GL/Mcal), while meal based measures (n = 200) were breakfast, lunch and dinner GL; and a new measure, GL peak score, to represent meal peaks. Insulin resistant status was defined as a homeostasis model assessment (HOMA) value of >3.99; HOMA as a continuous variable was also investigated.RESULTS:GL, GL/Mcal, carbohydrate (all P < 0.01), GL peak score (P = 0.04) and lunch GL (P = 0.04) were positively and independently associated with insulin resistant status. Daily measures were more predictive than meal-based measures, with minimal difference between GL/Mcal, GL and carbohydrate. No significant associations were observed with HOMA as a continuous variable.CONCLUSION:A dietary pattern with high peaks of GL above the individual's average intake was a significant independent predictor of insulin resistance in this population, however the contribution was less than daily GL and carbohydrate variables. Accounting for energy intake slightly increased the predictive ability of GL, which is potentially important when examining disease risk in more diverse populations with wider variations in energy requirements.
Resumo:
The present study investigated metabolic responses to fat and carbohydrate ingestion in lean male individuals consuming an habitual diet high or low in fat. Twelve high-fat phenotypes (HF) and twelve low-fat phenotypes (LF) participated in the study. Energy intake and macronutrient intake variables were assessed using a food frequency questionnaire. Resting (RMR) and postprandial metabolic rate and substrate oxidation (respiratory quotient; RQ) were measured by indirect calorimetry. HF had a significantly higher RMR and higher resting heart rate than LF. These variables remained higher in HF following the macronutrient challenge. In all subjects the carbohydrate load increased metabolic rate and heart rate significantly more than the fat load. Fat oxidation (indicated by a low RQ) was significantly higher in HF than in LF following the fat load; the ability to oxidise a high carbohydrate load did not differ between the groups. Lean male subjects consuming a diet high in fat were associated with increased energy expenditure at rest and a relatively higher fat oxidation in response to a high fat load; these observations may be partly responsible for maintaining energy balance on a high-fat (high-energy) diet. In contrast, a low consumer of fat is associated with relatively lower energy expenditure at rest and lower fat oxidation, which has implications for weight gain if high-fat foods or meals are periodically introduced to the diet.
Resumo:
This study assessed the reliability and validity of a palm-top-based electronic appetite rating system (EARS) in relation to the traditional paper and pen method. Twenty healthy subjects [10 male (M) and 10 female (F)] — mean age M=31 years (S.D.=8), F=27 years (S.D.=5); mean BMI M=24 (S.D.=2), F=21 (S.D.=5) — participated in a 4-day protocol. Measurements were made on days 1 and 4. Subjects were given paper and an EARS to log hourly subjective motivation to eat during waking hours. Food intake and meal times were fixed. Subjects were given a maintenance diet (comprising 40% fat, 47% carbohydrate and 13% protein by energy) calculated at 1.6×Resting Metabolic Rate (RMR), as three isoenergetic meals. Bland and Altman's test for bias between two measurement techniques found significant differences between EARS and paper and pen for two of eight responses (hunger and fullness). Regression analysis confirmed that there were no day, sex or order effects between ratings obtained using either technique. For 15 subjects, there was no significant difference between results, with a linear relationship between the two methods that explained most of the variance (r2 ranged from 62.6 to 98.6). The slope for all subjects was less than 1, which was partly explained by a tendency for bias at the extreme end of results on the EARS technique. These data suggest that the EARS is a useful and reliable technique for real-time data collection in appetite research but that it should not be used interchangeably with paper and pen techniques.
Resumo:
The way in which metabolic fuels are utilised can alter the expression of behaviour in the interests of regulating energy balance and fuel availability. This is consistent with the notion that the regulation of appetite is a psychobiological process, in which physiological mediators act as drivers of behaviour. The glycogenostatic theory suggests that glycogen availability is central in eliciting negative feedback signals to restore energy homeostasis. Due to its limited storage capacity, carbohydrate availability is tightly regulated and its restoration is a high metabolic priority following depletion. It has been proposed that such depletion may act as a biological cue to stimulate compensatory energy intake in an effort to restore availability. Due to the increased energy demand, aerobic exercise may act as a biological cue to trigger compensatory eating as a result of perturbations to muscle and liver glycogen stores. However, studies manipulating glycogen availability over short-term periods (1-3 days) using exercise, diet or both have often produced equivocal findings. There is limited but growing evidence to suggest that carbohydrate balance is involved in the short-term regulation of food intake, with a negative carbohydrate balance having been shown to predict greater ad libitum feeding. Furthermore, a negative carbohydrate balance has been shown to be predictive of weight gain. However, further research is needed to support these findings as the current research in this area is limited. In addition, the specific neural or hormonal signal through which carbohydrate availability could regulate energy intake is at present unknown. Identification of this signal or pathway is imperative if a casual relationship is to be established. Without this, the possibility remains that the associations found between carbohydrate balance and food intake are incidental.
Influence of carbohydrate source on the in vitro flowering of Sturt's desert pea (Swainsona formosa)
Resumo:
Objectives In non-alcoholic fatty liver disease (NAFLD), hepatic steatosis is intricately linked with a number of metabolic alterations. We studied substrate utilisation in NAFLD during basal, insulin-stimulated and exercise conditions, and correlated these outcomes with disease severity. Methods 20 patients with NAFLD (mean±SD body mass index (BMI) 34.1±6.7 kg/m2) and 15 healthy controls (BMI 23.4±2.7 kg/m2) were assessed. Respiratory quotient (RQ), whole-body fat (Fatox) and carbohydrate (CHOox) oxidation rates were determined by indirect calorimetry in three conditions: basal (resting and fasted), insulin-stimulated (hyperinsulinaemic–euglycaemic clamp) and exercise (cycling at an intensity to elicit maximal Fatox). Severity of disease and steatosis were determined by liver histology, hepatic Fatox from plasma β-hydroxybutyrate concentrations, aerobic fitness expressed as , and visceral adipose tissue (VAT) measured by computed tomography. Results Within the overweight/obese NAFLD cohort, basal RQ correlated positively with steatosis (r=0.57, p=0.01) and was higher (indicating smaller contribution of Fatox to energy expenditure) in patients with NAFLD activity score (NAS) ≥5 vs <5 (p=0.008). Both results were independent of VAT, % body fat and BMI. Compared with the lean control group, patients with NAFLD had lower basal whole-body Fatox (1.2±0.3 vs 1.5±0.4 mg/kgFFM/min, p=0.024) and lower basal hepatic Fatox (ie, β-hydroxybutyrate, p=0.004). During exercise, they achieved lower maximal Fatox (2.5±1.4 vs. 5.8±3.7 mg/kgFFM/min, p=0.002) and lower (p<0.001) than controls. Fatox during exercise was not associated with disease severity (p=0.79). Conclusions Overweight/obese patients with NAFLD had reduced hepatic Fatox and reduced whole-body Fatox under basal and exercise conditions. There was an inverse relationship between ability to oxidise fat in basal conditions and histological features of NAFLD including severity of steatosis and NAS
Resumo:
Background Carbohydrate-rich fluids are used to improve postoperative recovery but the effectiveness of the product for reducing length of hospital stay is uncertain. Objective To assess the effectiveness of preoperative loading with carbohydrates on postoperative outcomes. Participants Forty six patients booked for elective colorectal surgery. Methods Participants were allocated to a Carbohydrate-rich fluid group or Usual Care group during their pre-admission clinic visit. The primary outcome was ‘Time to readiness for discharge’. Results Patients in the control group spent on average 4.3 days (95% confidence interval 3.2 to 5.7) and the Carbohydrate-rich fluid group spent 4.1 days (95% confidence interval 3.2 to 5.4) until the primary outcome was met (p=0.824). Conclusion The safety of preoperative high carbohydrate fluids is supported but we were unable to confirm or refute the benefit of CHO for shorter hospital stay following elective colorectal surgery.
Resumo:
The effect of nutrient availability on the acute molecular responses following repeated sprint exercise is unknown. The aim of this study was to determine skeletal muscle cellular and protein synthetic responses following repeated sprint exercise with nutrient provision. Eight healthy young male subjects undertook two sprint cycling sessions (10 × 6 s, 0.75 N m torque kg -1, 54 s recovery) with either pre-exercise nutrient (24 g whey, 4.8 g leucine, 50 g maltodextrin) or non-caloric placebo ingestion. Muscle biopsies were taken from vastus lateralis at rest, and after 15 and 240 min post-exercise recovery to determine muscle cell signalling responses and protein synthesis by primed constant infusion of L-[ring- 13C 6] phenylalanine. Peak and mean power outputs were similar between nutrient and placebo trials. Post-exercise myofibrillar protein synthetic rate was greater with nutrient ingestion compared with placebo ( ? 48%, P<0.05) but the rate of mitochondrial protein synthesis was similar between treatments. The increased myofibrillar protein synthesis following sprints with nutrient ingestion was associated with coordinated increases in Akt-mTOR-S6KrpS6 phosphorylation 15 min post-exercise (?200-600%, P<0.05), while there was no effect on these signalling molecules when exercise was undertaken in the fasted state. For the first time we report a beneficial effect of nutrient provision on anabolic signalling and muscle myofibrillar protein synthesis following repeated sprint exercise. Ingestion of protein/carbohydrate in close proximity to high-intensity sprint exercise provides an environment that increases cell signalling and protein synthesis.