920 resultados para Capacity of soil use


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este trabalho objetivou estudar o efeito da vinhaça na biodegradação em solo da borra oleosa proveniente da refinaria de petróleo Replan-Petrobras. Foi utilizado o método respirométrico de Bartha para verificar a eficiência de tratamentos constituídos de solo, borra oleosa nas concentrações 7 e 14 % (m/m) e ajuste da umidade do solo com e sem vinhaça (0,11 mL/g solo seco) durante 121 dias. Embora a adição da vinhaça tenha proporcionado um aumento da população microbiana nos tratamentos, esta não se mostrou adequada para aumentar a eficiência de biodegradação da borra oleosa em solo, uma vez que não houve diferença entre o CO2 produzido nos tratamentos com ou sem vinhaça após o consumo total da vinhaça. Assim, o uso da vinhaça como agente estimulante em processos de biodegradação mostrou-se ineficiente nas condições estudadas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este trabalho investigou a possibilidade de se usar a vinhaça como um agente estimulador de processos de biorremediação ex-situ. Amostras de água subterrânea e solo foram coletadas em três postos de combustíveis. A biorremediação do solo foi simulada em frascos de Bartha, usados para medir a produção de CO2, durante 48 dias, onde a vinhaça foi adicionada a uma concentração de 33 mL.Kg-1 de solo. A eficiência de biodegradação também foi medida pela quantificação de hidrocarbonetos totais de petróleo (TPH) por cromatografia gasosa. A biorremediação da água subterrânea foi realizada em experimentos laboratoriais simulando condições aeradas (bioreatores) e não aeradas (frascos de DBO). em ambos os casos, a concentração de vinhaça foi de 5 % (v/v) e diferentes parâmetros físico-químicos foram avaliados durante 20 dias. Embora um aumento da fertilização e da população microbiana do solo foram obtidos com a vinhaça, esta estratégia não se mostrou adequada em aumentar a eficiência da biorremediação dos solos contaminados com óleo diesel. A adição de vinhaça às águas subterrâneas contaminadas teve efeitos negativos na biodegradação dos hidrocarbonetos, uma vez que a vinhaça, como uma fonte de carbono facilmente assimilável, foi preferencialmente consumida.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of cover crops affects the support capacity of soil and least limiting water range to crop growth. The objective of this study was to quantify preconsolidation pressure (sigma(p)), compression index (CI) and least limiting water range (LLWR) of a reclaimed coal mining soil under different cover crops, in Candiota, RS, Brazil. In the experiment, with randomized blocks design and four replicates, the following cover crops (treatments) were evaluated: Hemarthria altissima (Poir.) Stapf & C.E. Hubbard, treatment 1 (T1), Paspalum notatum Flugge, treatment 4 (T4), Cynodon dactilon (L) Pers., treatment 5 (T5), control Brachiaria brizantha (Hochst.) Stapf, treatment 7 (T7) and without cover crop treatment 8 (reference treatment, T8). Soil compression and least limiting water range were evaluated with undisturbed samples at a depth of 0.00-0.05 m. In order to evaluate parameters of soil compressibility, the soil samples were saturated with water and subjected to -10 kPa matric potential and then submitted to a uniaxial compression test under the following pressures: 25, 50, 100, 200, 400, 800 and 1600 kPa. Cover crops decreased the preconsolidation pressure of constructed soils after coal mining and the greatest soil reclamation was obtained with the H. altissima cover crop, where the lowest degree of soil compactness and soil load capacity were observed. Soils cultivated under H. altissima or B. brizantha presented the highest least limiting water range and these two cover crops generated similar soil critical bulk density obtained by least limiting water range and soil load support capacity. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Compaction is one of the most important processes in roadway construction. It is needed to achieve high quality and uniformity of pavement materials, which in turn better ensure long lasting performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent interest in spatial pattern in terrestrial ecosystems has come from an awareness of theintimate relationship between spatial heterogeneity of soil resources and maintenance of plant species diversity. Soil and vegetation can vary spatially inresponse to several state factors of the system. In this study, we examined fine-scale spatial variability of soil nutrients and vascular plant species in contrasting herb-dominated communities (a pasture and an oldfield) to determine degree of spatial dependenceamong soil variables and plant community characteristics within these communities by sampling at 1-m intervals. Each site was divided into 25 1-m 2 plots. Mineral soil was sampled (2-cm diameter, 5-cm depth) from each of four 0.25-m2 quarters and combined into a single composite sample per plot. Soil organic matter was measured as loss-on-ignition. Extractable NH4 and NO3 were determined before and after laboratory incubation to determine potential net N mineralization and nitrification. Cations were analyzed using inductively coupled plasma emission spectrometry. Vegetation was assessed using estimated percent cover. Most soiland plant variables exhibited sharp contrasts betweenpasture and old-field sites, with the old field having significantly higher net N mineralization/nitrification, pH, Ca, Mg, Al, plant cover, and species diversity, richness, and evenness. Multiple regressions revealedthat all plant variables (species diversity, richness,evenness, and cover) were significantly related to soil characteristics (available nitrogen, organic matter,moisture, pH, Ca, and Mg) in the pasture; in the old field only cover was significantly related to soil characteristics (organic matter and moisture). Both sites contrasted sharply with respect to spatial pattern of soil variables, with the old field exhibiting a higher degree of spatial dependence. These results demonstrate that land-use practices can exert profound influence on spatial heterogeneity of both soil properties and vegetation in herb-dominated communities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The past decade has brought significant advancements in seasonal climate forecasting. However, water resources decision support and management continues to be based almost entirely on historical observations and does not take advantage of climate forecasts. This study builds on previous work that conditioned streamflow ensemble forecasts on observable climate indicators, such as the El Niño-Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO) for use in a decision support model for the Highland Lakes multi-reservoir system in central Texas operated by the Lower Colorado River Authority (LCRA). In the current study, seasonal soil moisture is explored as a climate indicator and predictor of annual streamflow for the LCRA region. The main purpose of this study is to evaluate the correlation of fractional soil moisture with streamflow using the 1950-2000 Variable Infiltration Capacity (VIC) Retrospective Land Surface Data Set over the LCRA region. Correlations were determined by examining different annual and seasonal combinations of VIC modeled fractional soil moisture and observed streamflow. The applicability of the VIC Retrospective Land Surface Data Set as a data source for this study is tested along with establishing and analyzing patterns of climatology for the watershed study area using the selected data source (VIC model) and historical data. Correlation results showed potential for the use of soil moisture as a predictor of streamflow over the LCRA region. This was evident by the good correlations found between seasonal soil moisture and seasonal streamflow during coincident seasons as well as between seasonal and annual soil moisture with annual streamflow during coincident years. With the findings of good correlation between seasonal soil moisture from the VIC Retrospective Land Surface Data Set with observed annual streamflow presented in this study, future research would evaluate the application of NOAA Climate Prediction Center (CPC) forecasts of soil moisture in predicting annual streamflow for use in the decision support model for the LCRA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Steel tubular cast-in-place pilings are used throughout the country for many different project types. These piles are a closed-end pipe with varying wall thicknesses and outer diameters, that are driven to depth and then the core is filled with concrete. These piles are typically used for smaller bridges, or secondary structures. Mostly the piling is designed based on a resistance based method which is a function of the soil properties of which the pile is driven through, however there is a structural capacity of these members that is considered to be the upper bound on the loading of the member. This structural capacity is given by the AASHTO LRFD (2010), with two methods. These two methods are based on a composite or non-composite section. Many state agencies and corporations use the non-composite equation because it is requires much less computation and is known to be conservative. However with the trends of the time, more and more structural elements are being investigated to determine ways to better understand the mechanics of the members, which could lead to more efficient and safer designs. In this project, a set of these piling are investigated. The way the cross section reacts to several different loading conditions, along with a more detailed observation of the material properties is considered as part of this research. The evaluation consisted of testing stub sections of pile with varying sizes (10-¾”, 12-¾”), wall thicknesses (0.375”, 0.5”), and testing methods (whole compression, composite compression, push through, core sampling). These stub sections were chosen as they would represent a similar bracing length to many different soils. In addition, a finite element model was developed using ANSYS to predict the strains from the testing of the pile cross sections. This model was able to simulate the strains from most of the loading conditions and sizes that were tested. The bond between the steel shell and the concrete core, along with the concrete strength through the depth of the cross section were some of the material properties of these sections that were investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite various research activities in the last decades across the world, many challenges remain to integrate the concept of ecosystem services (ESS) in decision-making, and a coherent approach to assess and value ESS is still lacking. There are a lot of different – often context-specific – ESS frameworks with their own definitions and understanding of terms. Based on a thorough review, the EU FP7 project RECARE (www.recare-project.eu) suggests an adapted framework for ecosystem services related to soils that can be used for practical application in preventing and remediating degradation of soils in Europe. This lays the foundation for the development and selection of appropriate methods to measure, evaluate, communicate and negotiate the services we obtain from soils with stakeholders in order to improve land management. Similar to many ESS frameworks, the RECARE framework distinguishes between an ecosystem and human well-being part. As the RECARE project is focused on soil threats, this is the starting point on the ecosystem part of the framework. Soil threats affect natural capital, such as soil, water, vegetation, air and animals, and are in turn influenced by those. Within the natural capital, the RECARE framework focuses especially on soil and its properties, classified in inherent and manageable properties. The natural capital then enables and underpins soil processes, while at the same time being affected by those. Soil processes, finally, are the ecosystem’s capacity to provide services, thus they support the provision of soil functions and ESS. ESS may be utilized to produce benefits for individuals and human society. Those benefits are explicitly or implicitly valued by individuals and human society. The values placed on those benefits influence policy and decision-making and thus lead to a societal response. Individual (e.g. farmers’) and societal decision making and policy determine land management and other (human) driving forces, which in turn affect soil threats and natural capital. In order to improve ESS with Sustainable Land Management (SLM) – i.e. measures aimed to prevent or remediate soil threats, the services identified in the framework need to be “manageable” (modifiable) for the stakeholders. To this end, effects of soil threats and prevention / remediation measures are captured by key soil properties as well as through bio-physical (e.g. reduced soil loss), socio-economic (e.g. reduced workload) and socio-cultural (e.g. aesthetics) impact indicators. In order to use such indicators in RECARE, it should be possible to associate the changes in soil processes to impacts of prevention / remediation measures (SLM). This requires the indicators to be sensitive enough to small changes, but still sufficiently robust to provide evidence of the change and attribute it to SLM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In a multi-level stakeholder approach the international level is of primordial importance not only in terms of legal frameworks, but also in terms of scientific analysis of the needs, options and constraints, as well as related to monitoring and evaluation systems. The Working Group on 'International Actions for the Sustainable Use of Soils' (IASUS) of the International Union of Soil Science (IUSS) identified a number of issues and measures in preparation of the 17thWorld Congress of Soil Science held in Bangkok, Thailand, in August 2002, and prepared a resolution in support of a 'global agenda for the sustainable use of soils', which was adopted on 21st August 2002 on the closing day of the congress.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Soil degradation threatens agricultural production and food security in Sub-Saharan Africa. In the coming decades, soil degradation, in particular soil erosion, will become worse through the expansion of agriculture into savannah and forest and changes in climate. This study aims to improve the understanding of how land use and climate change affect the hydrological cycle and soil erosion rates at the catchment scale. We used the semi-distributed, time-continuous erosion model SWAT (Soil Water Assessment Tool) to quantify runoff processes and sheet and rill erosion in the Upper Ouémé River catchment (14500 km**2, Central Benin) for the period 1998-2005. We could then evaluate a range of land use and climate change scenarios with the SWAT model for the period 2001-2050 using spatial data from the land use model CLUE-S and the regional climate model REMO. Field investigations were performed to parameterise a soil map, to measure suspended sediment concentrations for model calibration and validation and to characterise erosion forms, degraded agricultural fields and soil conservation practices. Modelling results reveal current "hotspots" of soil erosion in the north-western, eastern and north-eastern parts of the Upper Ouémé catchment. As a consequence of rapid expansion of agricultural areas triggered by high population growth (partially caused by migration) and resulting increases in surface runoff and topsoil erosion, the mean sediment yield in the Upper Ouémé River outlet is expected to increase by 42 to 95% by 2025, depending on the land use scenario. In contrast, changes in climate variables led to decreases in sediment yield of 5 to 14% in 2001-2025 and 17 to 24% in 2026-2050. Combined scenarios showed the dominance of land use change leading to changes in mean sediment yield of -2 to +31% in 2001-2025. Scenario results vary considerably within the catchment. Current "hotspots" of soil erosion will aggravate, and a new "hotspot" will appear in the southern part of the catchment. Although only small parts of the Upper Ouémé catchment belong to the most degraded zones in the country, sustainable soil and plant management practices should be promoted in the entire catchment. The results of this study can support planning of soil conservation activities in Benin.