50 resultados para Camptothecin


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Camptothecin, (CPT) is a pentacyclic alkaloid isolated for the first time from the Chinese tree Camptotheca acuminata, and which has soon attracted the attention of medicinal chemists and pharmacologists due to its promising anti-cancer activity against the most aggressive histo-types. So far, most of the synthesized camptothecin analogues are A and B ring modified compounds, which have been prepared via synthetic or semi-synthetic routes. To the best of our knowledge, a very limited number of C, D, or E ring modified analogues of CPT have been reported; moreover, the few derivatives known from the literature showed a reduced or no biological activity. This dissertation presents synthetic studies on camptothecin new derivatives along with the development of a new and general semi-synthetic methodology to obtain a large variety of analogues. We report here the semi-synthesis of a new family of 5-substituted CPT's, along with their biological activity evaluation, which will be compared with reference compounds. The use of carrier-linked prodrugs has emerged as a useful strategy to overcome some of the drawbacks related with the use of the parent drug, such as low solubility, membrane permeability properties, low oral absorption, instability, toxicity, and nontargeting. Herein we report CPT-prodrugs synthesized via ring opening of the lactone moiety as 17-O-acyl camptothecin tripartate conjugates, which bear a polyamine side chain with different architectures, as the carriers. Moreover, we found that the replacement of the oxygen atom with sulphur on the piridone D-ring, dramatically improves the potency of the novel 16a-thio-camptothecin derivatives, opening new possibilities in the modelling of this class of compounds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The DNA topology is an important modifier of DNA functions. Torsional stress is generated when right handed DNA is either over- or underwound, producing structural deformations which drive or are driven by processes such as replication, transcription, recombination and repair. DNA topoisomerases are molecular machines that regulate the topological state of the DNA in the cell. These enzymes accomplish this task by either passing one strand of the DNA through a break in the opposing strand or by passing a region of the duplex from the same or a different molecule through a double-stranded cut generated in the DNA. Because of their ability to cut one or two strands of DNA they are also target for some of the most successful anticancer drugs used in standard combination therapies of human cancers. An effective anticancer drug is Camptothecin (CPT) that specifically targets DNA topoisomerase 1 (TOP 1). The research project of the present thesis has been focused on the role of human TOP 1 during transcription and on the transcriptional consequences associated with TOP 1 inhibition by CPT in human cell lines. Previous findings demonstrate that TOP 1 inhibition by CPT perturbs RNA polymerase (RNAP II) density at promoters and along transcribed genes suggesting an involvement of TOP 1 in RNAP II promoter proximal pausing site. Within the transcription cycle, promoter pausing is a fundamental step the importance of which has been well established as a means of coupling elongation to RNA maturation. By measuring nascent RNA transcripts bound to chromatin, we demonstrated that TOP 1 inhibition by CPT can enhance RNAP II escape from promoter proximal pausing site of the human Hypoxia Inducible Factor 1 (HIF-1) and c-MYC genes in a dose dependent manner. This effect is dependent from Cdk7/Cdk9 activities since it can be reversed by the kinases inhibitor DRB. Since CPT affects RNAP II by promoting the hyperphosphorylation of its Rpb1 subunit the findings suggest that TOP 1inhibition by CPT may increase the activity of Cdks which in turn phosphorylate the Rpb1 subunit of RNAP II enhancing its escape from pausing. Interestingly, the transcriptional consequences of CPT induced topological stress are wider than expected. CPT increased co-transcriptional splicing of exon1 and 2 and markedly affected alternative splicing at exon 11. Surprisingly despite its well-established transcription inhibitory activity, CPT can trigger the production of a novel long RNA (5’aHIF-1) antisense to the human HIF-1 mRNA and a known antisense RNA at the 3’ end of the gene, while decreasing mRNA levels. The effects require TOP 1 and are independent from CPT induced DNA damage. Thus, when the supercoiling imbalance promoted by CPT occurs at promoter, it may trigger deregulation of the RNAP II pausing, increased chromatin accessibility and activation/derepression of antisense transcripts in a Cdks dependent manner. A changed balance of antisense transcripts and mRNAs may regulate the activity of HIF-1 and contribute to the control of tumor progression After focusing our TOP 1 investigations at a single gene level, we have extended the study to the whole genome by developing the “Topo-Seq” approach which generates a map of genome-wide distribution of sites of TOP 1 activity sites in human cells. The preliminary data revealed that TOP 1 preferentially localizes at intragenic regions and in particular at 5’ and 3’ ends of genes. Surprisingly upon TOP 1 downregulation, which impairs protein expression by 80%, TOP 1 molecules are mostly localized around 3’ ends of genes, thus suggesting that its activity is essential at these regions and can be compensate at 5’ ends. The developed procedure is a pioneer tool for the detection of TOP 1 cleavage sites across the genome and can open the way to further investigations of the enzyme roles in different nuclear processes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Das ADAM10-Gen kodiert für eine membrangebundene Disintegrin-Metalloproteinase, die das Amyloidvorläuferprotein spaltet. Im Mausmodell konnte bewiesen werden, dass die Überexpression von ADAM10 die Plaquebildung vermindern und das Langzeitgedächtnis verbessert. Aus diesem Grund ist es für einen möglichen Therapieansatz für die Alzheimer’sche Erkrankung erforderlich, die Organisation des humanen ADAM10-Gens und seines Promotors aufzuklären. Beim Vergleich der genomischen Sequenzen von humanem und murinem ADAM10 zeigte sich eine hohe Übereinstimmung. Beide Gene umfassen 160 kbp und bestehen aus 16 Exons. Die ersten 500 bp stromaufwärts vom Translationsstartpunkt zwischen dem Menschen, der Maus und der Ratte sind hoch konserviert. Diese Region beinhaltet spezifische regulatorische Elemente, die die ADAM10-Transkription modulieren. In den ersten 2179 bp stromaufwärts vom humanen ADAM10-Translationsstartpunkt fanden sich einige potentiellen Transkriptionsfaktor-bindungsstellen (Brn-2, SREBP, Oct-1, Creb1/cJun, USF, Maz, MZF-1, NFkB und CDPCR3HD). Es wurde eine charakteristische GC-Box und eine CAAT-Box, aber keine TATA-Box identifiziert. Nach Klonierung dieser 2179 bp großen Region wurde eine starke Promotoraktivität, insbesondere in neuronalen Zelllinien, gefunden. Bei der Analyse von Deletionskonstrukten wurde die Region zwischen -508 und -300 als essentiell für die Transkriptionsaktivierung bestimmt. Die Promotoraktivität wird zudem streng herunterreguliert, wenn in die Region 317 bp stromaufwärts vom Startpunkt der Translation eine Punktmutation eingeführt wird. Diese per Computeranalyse als USF-Bindungsstelle deklarierte Region spielt eine zentrale Rolle bei der ADAM10-Transkription. Im EMSA wurde eine Protein-DNA-Interaktion für diese Region gezeigt. Durch transienten Transfektionen in Schneider Drosophila Insektenzellen konnte nachgewiesen werden, dass die Überexpression von Sp1 und USp3 für die ADAM10-Promotoraktivität entscheidend ist. In EMSA-Studien bestätigte sich eine Protein-DNA-Interaktion für die Region -366 bp stromaufwärts vom Translationsstartpunkt. Die Punktmutation in der CAAT-Box veränderte die die Promotoraktivität nicht. Da weiterhin für diese potentielle Bindungsstelle kein Bindungsfaktor vorausgesagt wurde, scheint die CAAT-Box keine Bedeutung bei der Promotorregulation zu spielen. Schließlich fand sich im EMSA eine Protein-DNA-Interaktion für die Bindungsstelle 203 bp stromaufwärts vom Translationsstartpunkt. Diese in Computeranalysen als RXR-Bindungsstelle identifizierte Region ist ebenfalls von Bedeutung in der Promotorregulation. Auf der Suche nach Substanzen, die die ADAM10-Promotoraktivität beeinflussen, wurde ein negativer Effekt durch die apoptoseauslösende Substanz Camptothecin und ein positiver Effekt durch die zelldifferenzierungsauslösende Substanz all-trans Retinsäure festgestellt. Mit dieser Arbeit wurde die genomische Organisation des ADAM10-Gens zusammen mit dem zugehörigen Promotor aufgeklärt und ein neuer Regulationsmechanismus für die Hochregulation der Expression der alpha-Sekretase ADAM10 gefunden. Im Weiteren sollen nun die genauen Mechanismen bei der Hochregulation der alpha-Sekretase ADAM10 durch Retinsäure untersucht und durch Mikroarray-Analysen an RNA-Proben transgener Mäuse, welche ADAM10 überexpremieren, neue therapeutische Ansätze zur Behandlung der Alzheimer´schen Erkrankung identifiziert werden.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recenti analisi sull’intero trascrittoma hanno rivelato una estensiva trascrizione di RNA non codificanti (ncRNA), le quali funzioni sono tuttavia in gran parte sconosciute. In questo lavoro è stato dimostrato che alte dosi di camptotecina (CPT), un farmaco antitumorale inibitore della Top1, aumentano la trascrizione di due ncRNA antisenso in 5’ e 3’ (5'aHIF-1α e 3'aHIF-1α rispettivamente) al locus genico di HIF-1α e diminuiscono i livelli dell’mRNA di HIF-1α stesso. Gli effetti del trattamento sono Top1-dipendenti, mentre non dipendono dal danno al DNA alla forca di replicazione o dai checkpoint attivati dal danno al DNA. I ncRNA vengono attivati in risposta a diversi tipi di stress, il 5'aHIF-1α è lungo circa 10 kb e possiede sia il CAP in 5’ sia poliadenilazione in 3’ (in letteratura è noto che il 3'aHIF-1α è un trascritto di 1,7 kb, senza 5’CAP né poliadenilazione). Analisi di localizzazione intracellulare hanno dimostrato che entrambi sono trascritti nucleari. In particolare 5'aHIF-1α co-localizza con proteine del complesso del poro nucleare, suggerendo un suo possibile ruolo come mediatore degli scambi della membrana nucleare. È stata dimostrata inoltre la trascrizione dei due ncRNA in tessuti di tumore umano del rene, evidenziandone possibili ruoli nello sviluppo del cancro. È anche noto in letteratura che basse dosi di CPT in condizioni di ipossia diminuiscono i livelli di proteina di HIF-1α. Dopo aver dimostrato su diverse linee cellulari che i due ncRNA sopracitati non potessero essere implicati in tale effetto, abbiamo studiato le variazioni dell’intero miRnoma alle nuove condizioni sperimentali. In tal modo abbiamo scoperto che il miR-X sembra essere il mediatore molecolare dell’abbattimento di HIF-1α dopo trattamento con basse dosi di CPT in ipossia. Complessivamente, questi risultati suggeriscono che il fattore di trascrizione HIF-1α venga finemente regolato da RNA non-codificanti indotti da danno al DNA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Applikationsfertige Zytostatikazubereitungen werden heute unter der Verantwortung eines Apothekers in zentralisierten Herstellungsbereichen hergestellt. Weil die Verordnung der Chemotherapie ein großes Fehlerrisiko birgt, ist konsequentes Verordnungsmonitoring ein wesentlicher Teilprozess der zentralen Zytostatikazubereitung. rnDie aktuelle Umsetzung und die Ergebnisse des Verordnungsmonitorings in den Universitätskliniken Deutschlands wurden im Rahmen dieser Arbeit in einer prospektiven Erhebung erfasst. Als häufigste Verordnungsirrtümer wurden Dosisberechnungsfehler (48%), welche als von hoher Relevanz (78%) für die Patientensicherheit angesehen wurden, genannt. Die Inzidenz der Verordnungsfehler betrug durchschnittlich 0,77% bei rund 1950 Verordnungen pro Tag. Das konsequente Verordnungsmonitoring von pharmazeutischer Seite erfolgt höchst effizient und leistet einen hohen Beitrag zur Patienten- und Arzneimitteltherapiesicherheit in der Onkologie.rnFür die Herstellung der applikationsfertiger Zytostatika-Zubereitungen sind fundierte Kenntnisse zu deren physikalisch-chemischen Stabilität erforderlich. Zu neu zugelassenen Zytostatika und insbesondere Biologicals, stehen häufig noch keine Daten zur Stabilität der applikationsfertigen Lösungen zur Verfügung. Die Bestimmung der physikalisch-chemischen Stabilität war daher Gegenstand dieser Arbeit. Die applikationsfertigen Infusionslösungen der Purin-Analoga Nelarabin und Clofarabin (RP-HPLC), sowie des monoklonalen Antiköpers Trastuzumab (SEC, UV-Spektroskopie, SDS-Page), erwiesen sich über einen Zeitraum von mindestens 28 Tagen als stabil. Die Stabilität zweier Camptothecin-Derivate (Topotecan und Irinotecan) beladen auf DC Beads™, wie auch die Ladungskapazität und Kompatibilität mit Kontrastmitteln, wurde ebenfalls bewiesen. rn

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chemotherapy is a common and effective method to treat many forms of cancer. However, treatment of cancer with chemotherapy has severe side effects which often limit the doses of therapy administered. Because some cancer chemotherapeutics target proliferating cells and tissues, all dividing cells, whether normal or tumor, are affected. Cell culture studies have demonstrated that UCN-01 is able to reversibly and selectively arrest normal dividing cells; tumor cells lines do not undergo this temporary arrest. Following UCN-01 treatment, normal cells displayed a 50-fold increase in IC50 for camptothecin; tumor cells showed no such increased tolerance. We have examined the response of the proliferating tissues of the mouse to UCN- 01 treatment, using the small bowel epithelium as a model system. Our results indicate that UCN-01 treatment can cause a cell cycle arrest in the gut epithelium, beginning 24 hours following UCN-01 administration, with cell proliferation remaining suppressed for one week. Two weeks post-UCN-01 treatment the rate of proliferation returns to normal levels. 5-FU administered during this period demonstrates that UCN-01 is able to provide protection to normal cells of the mouse within a narrow window of efficacy, from three to five days post-UCN-01. UCN-01 pretreated mice displayed improved survival, weight status and blood markers following 5-FU compared to control mice, indicating that UCN-01 can protect normal dividing tissues. The mechanism by which UCN-01 arrests normal cells in vivo was also examined. We have demonstrated that UCN-01 treatment in mice causes an increase in the G1 phase cell cycle proteins cdk4 and cyclin D, as well as the inhibitor p27. Phosphorylated Rb was also elevated in the arrested cells. These results are a departure from cell culture studies, in which inhibition of G1 phase cyclin dependent kinases led to hyposphosphorylation of Rb. Future investigation will be required to understand the mechanism of UCN-01 action. This is important information, especially for identification of alternate compounds which could provide the protection afforded by UCN-01.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective Albeit clear advances in the treatment of SLE, many patients still present with refractory lupus nephritis requiring new treatment strategies for this disease. Here we determined whether reduced doses of the topoisomerase I inhibitor irinotecan, which is known as chemotherapeutic agent, were able to suppress SLE in NZB/W F1 mice. We further evaluated the potential mechanism how irinotecan influenced the course of SLE. Methods NZB/W F1 mice were treated with low dose irinotecan either from week 24 of age or from established glomerulonephritis defined by a proteinuria ≥grade 3+. Binding of anti-dsDNA antibodies was measured by ELISA; and DNA relaxation was visualized by gel electrophoresis. Results Significantly reduced irinotecan dosages improved lupus nephritis and prolonged survival in NZB/W F1 mice. The lowest dose successfully used for the treatment of established murine lupus nephritis was more than 50 times lower than the dose usually applied for chemotherapy in humans. As a mechanism, low dose irinotecan reduced B cell activity; however, the levels of B cell activity in irinotecan-treated mice were similar to those in Balb/c mice of the same age suggesting that irinotecan did not induce a clear immunosuppression. In addition, incubation of double-stranded (ds) DNA with topoisomerase I increased binding of murine and human anti-dsDNA antibodies showing for the first time that relaxed DNA is more susceptible to anti-dsDNA antibody binding. This effect was reversed by addition of the topoisomerase I inhibitor camptothecin. Conclusion Our results propose topoisomerase I inhibitors as a novel and targeted therapy for SLE. © 2014 American College of Rheumatology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE The treatment of lupus nephritis is still an unmet medical need requiring new therapeutic approaches. Our group found recently that irinotecan, an inhibitor of topoisomerase I (topo I), reversed proteinuria and prolonged survival in mice with advanced lupus nephritis. While irinotecan is known to stabilize the complex of topo I and DNA, the enzyme tyrosyl-DNA phosphodiesterase 1 (TDP-1) functions in an opposing manner by releasing topo I from DNA. Therefore, we undertook this study to test whether the TDP-1 inhibitor furamidine has an additional effect on lupus nephritis when used in combination with irinotecan. METHODS NZB/NZW mice were treated with low-dose irinotecan and furamidine either alone or in combination beginning at age 26 weeks. DNA relaxation was visualized using gel electrophoresis. Binding of anti-double-stranded DNA (anti-dsDNA) antibodies to DNA modified by topo I, TDP-1, and the topo I inhibitor camptothecin was determined by enzyme-linked immunosorbent assay. RESULTS Compared to treatment with either agent alone, simultaneous treatment with low-dose irinotecan and furamidine significantly improved survival of NZB/NZW mice. Similar to what has been previously shown for irinotecan alone, the combination treatment did not change the levels of anti-dsDNA antibodies. In vitro, recombinant TDP-1 increased topo I-mediated DNA relaxation, resulting in enhanced binding of anti-dsDNA antibodies. In combination with topo I and camptothecin, TDP-1 reversed the inhibitory effects of camptothecin on DNA relaxation and anti-dsDNA binding. CONCLUSION Affecting DNA relaxation by the enzymes topo I and TDP-1 and their inhibitors may be a promising approach for the development of new targeted therapies for systemic lupus erythematosus.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

NK314 is a novel synthetic benzo[c]phenanthridine alkaloid that is currently in clinical trials as an antitumor compound, based on impressive activities in preclinical models. However, its mechanism of action is unknown. The present investigations were directed at determining the mechanism of action of this agent and cellular responses to NK314. My studies demonstrated that NK314 intercalated into DNA, trapped topoisomerase IIα in its cleavage complex intermediate, and inhibited the ability of topoisomerase IIα to relax super-coiled DNA. CEM/VM1 cells, which are resistant to etoposide due to mutations in topoisomerase IIα, were cross-resistant to NK314. However, CEM/C2 cells, which are resistant to camptothecin due to mutations in topoisomerase I, retained sensitivity. This indicates topoisomerase IIα is the target of NK314 in the cells. NK314 caused phosphorylation of the histone variant, H2AX, which is considered a marker of DNA double-strand breaks. DNA double-strand breaks were also evidenced by pulsed-field gel electrophoresis and visualized as chromosomal aberrations after cells were treated with NK314 and arrested in mitosis. Cell cycle checkpoints are activated following DNA damage. NK314 induced significant G2 cell cycle arrest in several cell lines, independent of p53 status, suggesting the existence of a common mechanism of checkpoint activation. The Chk1-Cdc25C-Cdk1 G2 checkpoint pathway was activated in response to NK314, which can be abrogated by the Chk1 inhibitor UCN-01. Cell cycle checkpoint activation may be a defensive mechanism that provides time for DNA repair. DNA double-strand breaks are repaired either through ATM-mediated homologous recombination or DNA-PK-mediated non-homologous end-joining repair pathways. Clonogenic assays demonstrated a significant decrease of colony formation in both ATM deficient and DNA-PK deficient cells compared to ATM repleted and DNA-PK wild type cells respectively, indicating that both ATM and DNA-PK play important roles in the survival of the cells in response to NK314. The DNA-PK specific inhibitor NU7441 also significantly sensitized cells to NK314. In conclusion, the major mechanism of NK314 is to intercalate into DNA, trap and inhibit topoisomerase IIα, an action that leads to the generation of double-strand DNA breaks, which activate ATM and DNA-PK mediated DNA repair pathways and Chk1 mediated G2 checkpoint pathway. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The combitiatorial approach restriction endonuclease protection selection and amplification REPSA was successfully used to determine ideal DNA interactions sites of covalent ligands. Unlike most other combinatorial methods, REPSA is based on inhibition of enzymatic cleavage by specific ligand-DNA complexes, which enables identification of binding sites of various ligands. However, the inherent nature of this technique posses a problem during selection of binding sites of covalent ligands. By modifying the technique according to the nature of the ligand, we demonstrate the flexibility of REPSA in identifying the preferred binding sites for monocovalent ligands, topoisomerase I and tallimustine, and the bicovalent ligand topoisomerase II. From among the preferred binding sites, we identified the consensus binding sequence of camptothecin induced topoisomerase I cleavage as ‘aGWT/Gc’, and tallimustine consensus sequences as ‘GTTCTA’ and ‘TTTTTTC’. We have shown for the first time that preferential binding of tallimustine occurs at sequences not previously reported. Furthermore, our data indicate that tallimustine is a novel DNA minor groove, guanine-specific alkylating agent. ^ Additionally, we have demonstrated in vivo that sequence-specific covalent DNA-binding small molecules have the ability to regulate transcription by inhibiting RNA polymerase II. Tallimustine, binding to its preferred sequences located in the 5′ untranslated region were an effective impediment for transcribing polymerase II. The ability of covalent binding small molecules to target predetermined DNA sequences located downstream of the promoter suggests a general approach for regulation of gene expression. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Werner syndrome (WS) is an autosomal recessive disorder characterized by genomic instability and the premature onset of a number of age-related diseases. The gene responsible for WS encodes a member of the RecQ-like subfamily of DNA helicases. Here we show that its murine homologue maps to murine chromosome 8 in a region syntenic with the human WRN gene. We have deleted a segment of this gene and created Wrn-deficient embryonic stem (ES) cells and WS mice. While displaying reduced embryonic survival, live-born WS mice otherwise appear normal during their first year of life. Nonetheless, although several DNA repair systems are apparently intact in homozygous WS ES cells, such cells display a higher mutation rate and are significantly more sensitive to topoisomerase inhibitors (especially camptothecin) than are wild-type ES cells. Furthermore, mouse embryo fibroblasts derived from homozygous WS embryos show premature loss of proliferative capacity. At the molecular level, wild-type, but not mutant, WS protein copurifies through a series of centrifugation and chromatography steps with a multiprotein DNA replication complex.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1-β-d-Arabinofuranosylcytosine (Ara-C) is a nucleoside analog commonly used in the treatment of leukemias. Ara-C inhibits DNA polymerases and can be incorporated into DNA. Its mechanism of cytotoxicity is not fully understood. Using oligonucleotides and purified human topoisomerase I (top1), we found a 4- to 6-fold enhancement of top1 cleavage complexes when ara-C was incorporated at the +1 position (immediately 3′) relative to a unique top1 cleavage site. This enhancement was primarily due to a reversible inhibition of top1-mediated DNA religation. Because ara-C incorporation is known to alter base stacking and sugar puckering at the misincorporation site and at the neighboring base pairs, the observed inhibition of religation at the ara-C site suggests the importance of the alignment of the 5′-hydroxyl end for religation with the phosphate group of the top1 phosphotyrosine bond. This study also demonstrates that ara-C treatment and DNA incorporation trap top1 cleavage complexes in human leukemia cells. Finally, we report that camptothecin-resistant mouse P388/CPT45 cells with no detectable top1 are crossresistant to ara-C, which suggests that top1 poisoning is a potential mechanism for ara-C cytotoxicity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The RAD51 protein has been shown to participate in homologous recombination by promoting ATP-dependent homologous pairing and strand transfer reactions. In the present study, we have investigated the possible involvement of RAD51 in non-homologous recombination. We demonstrate that overexpression of CgRAD51 enhances the frequency of spontaneous non-homologous recombination in the hprt gene of Chinese hamster cells. However, the rate of non-homologous recombination induced by the topoisomerase inhibitors campothecin and etoposide was not altered by overexpression of RAD51. These results indicate that the RAD51 protein may perform a function in connection with spontaneous non-homologous recombination that is not essential to or not rate-limiting for non-homologous recombination induced by camptothecin or etoposide. We discuss the possibility that the role played by RAD51 in non-homologous recombination observed here may not be linked to non-homologous end-joining.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A DNA helicase, called chloroplast DNA (ctDNA) helicase II, was purified to apparent homogeneity from pea (Pisum sativum). The enzyme contained intrinsic, single-stranded, DNA-dependent ATPase activity and an apparent molecular mass of 78 kD on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The DNA helicase was markedly stimulated by DNA substrates with fork-like replication structures. A 5′-tailed fork was more active than the 3′-tailed fork, which itself was more active than substrates without a fork. The direction of unwinding was 3′ to 5′ along the bound strand, and it failed to unwind blunt-ended duplex DNA. DNA helicase activity required only ATP or dATP hydrolysis. The enzyme also required a divalent cation (Mg2+>Mn2+>Ca2+) for its unwinding activity and was inhibited at 200 mm KCl or NaCl. This enzyme could be involved in the replication of ctDNA. The DNA major groove-intercalating ligands nogalamycin and daunorubicin were inhibitory to unwinding (Ki approximately 0.85 μm and 2.2 μm, respectively) and ATPase (Ki approximately 1.3 μm and 3.0 μm, respectively) activities of pea ctDNA helicase II, whereas ellipticine, etoposide (VP-16), and camptothecin had no effect on the enzyme activity. These ligands may be useful in further studies of the mechanisms of chloroplast helicase activities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A number of studies have suggested that topoisomerase I (topo I) activity may be important in human immunodeficiency virus type 1 (HIV-1) replication. Specifically it has been reported that purified virus particles have topo I activity and that inhibitors of this enzyme can inhibit virus replication in vitro. We have investigated a possible association of HIV-1 gag proteins with topo I activity. We found that whereas the gag-encoded proteins by themselves do not have activity, the nucleocapsid protein p15 can interact with and enhance the activity of cellular topo I. Furthermore it could be demonstrated that topo I markedly enhanced HIV-1 reverse transcriptase activity in vitro and that this could be inhibited by the topo I-specific inhibitor camptothecin. The findings suggest that cellular topo I plays an important role in the reverse transcription of HIV-1 RNA and that the recruitment of this enzyme may be an important step in virus replication.