992 resultados para Calculation methodology
Resumo:
This work developed a methodology that uses the thermoeconomic functional diagram applied for allocating the cost of products produced by a biodiesel plant. The first part of this work discusses some definitions of exergy and thermoeconomy, with a detailed description of the biodiesel plant studied, identification of the system functions through Physical Diagram, calculation of the irreversibilities of the plant, construction of the Thermoeconomic Functional Diagram and determination of the expressions for the plant's exergetic functions. In order to calculate the exergetic increments and the physical exergy of certain flows in each step, the Chemical Engineering Simulation Software HYSYS 3.2 was used. The equipments that have the highest irreversibilities in the plant were identified after the exergy calculation. It was also found that the lowest irreversibility in the system refers to the process with a molar ratio of 6:1 and a reaction temperature of 60 °C in the transesterification process. In the second part of this work (Part II), it was calculated the thermoeconomic cost of producing biodiesel and related products, including the costs of carbon credits for the CO2 that is not released into the atmosphere, when a percentage of biodiesel is added to the petroleum diesel used by Brazil's internal diesel fleet (case study). © 2013 Elsevier Ltd. All rights reserved.
Resumo:
Purpose - The purpose of this paper is to develop an efficient numerical algorithm for the self-consistent solution of Schrodinger and Poisson equations in one-dimensional systems. The goal is to compute the charge-control and capacitance-voltage characteristics of quantum wire transistors. Design/methodology/approach - The paper presents a numerical formulation employing a non-uniform finite difference discretization scheme, in which the wavefunctions and electronic energy levels are obtained by solving the Schrodinger equation through the split-operator method while a relaxation method in the FTCS scheme ("Forward Time Centered Space") is used to solve the two-dimensional Poisson equation. Findings - The numerical model is validated by taking previously published results as a benchmark and then applying them to yield the charge-control characteristics and the capacitance-voltage relationship for a split-gate quantum wire device. Originality/value - The paper helps to fulfill the need for C-V models of quantum wire device. To do so, the authors implemented a straightforward calculation method for the two-dimensional electronic carrier density n(x,y). The formulation reduces the computational procedure to a much simpler problem, similar to the one-dimensional quantization case, significantly diminishing running time.
Resumo:
This article presents the implementation and validation of a dose calculation approach for deforming anatomical objects. Deformation is represented by deformation vector fields leading to deformed voxel grids representing the different deformation scenarios. Particle transport in the resulting deformed voxels is handled through the approximation of voxel surfaces by triangles in the geometry implementation of the Swiss Monte Carlo Plan framework. The focus lies on the validation methodology which uses computational phantoms representing the same physical object through regular and irregular voxel grids. These phantoms are chosen such that the new implementation for a deformed voxel grid can be compared directly with an established dose calculation algorithm for regular grids. Furthermore, separate validation of the aspects voxel geometry and the density changes resulting from deformation is achieved through suitable design of the validation phantom. We show that equivalent results are obtained with the proposed method and that no statistically significant errors are introduced through the implementation for irregular voxel geometries. This enables the use of the presented and validated implementation for further investigations of dose calculation on deforming anatomy.
Resumo:
This paper proposes an interleaved multiphase buck converter with minimum time control strategy for envelope amplifiers in high efficiency RF power amplifiers. The solution of the envelope amplifier is to combine the proposed converter with a linear regulator in series. High system efficiency can be obtained through modulating the supply voltage of the envelope amplifier with the fast output voltage variation of the converter working with several particular duty cycles that achieve total ripple cancellation. The transient model for minimum time control is explained, and the calculation of transient times that are pre-calculated and inserted into a look-up table is presented. The filter design trade-off that limits capability of envelope modulation is also discussed. The experimental results verify the fast voltage transient obtained with a 4-phase buck prototype.
Resumo:
The Direct Boundary Element Method (DBEM) is presented to solve the elastodynamic field equations in 2D, and a complete comprehensive implementation is given. The DBEM is a useful approach to obtain reliable numerical estimates of site effects on seismic ground motion due to irregular geological configurations, both of layering and topography. The method is based on the discretization of the classical Somigliana's elastodynamic representation equation which stems from the reciprocity theorem. This equation is given in terms of the Green's function which is the full-space harmonic steady-state fundamental solution. The formulation permits the treatment of viscoelastic media, therefore site models with intrinsic attenuation can be examined. By means of this approach, the calculation of 2D scattering of seismic waves, due to the incidence of P and SV waves on irregular topographical profiles is performed. Sites such as, canyons, mountains and valleys in irregular multilayered media are computed to test the technique. The obtained transfer functions show excellent agreement with already published results.
Resumo:
Europe needs to restructure its energy system. The aim to decrease the reliance on fossil fuels to a higher dependence on renewable energy has now been imposed by The European Commission. In order to achieve this goal there is a great interest in Norway to become "The Green Battery of Europe". In the pursuit of this goal a GIS-tool was created to investigate the pump storage potential in Norway. The tool searches for possible connections between existing reservoirs and dams with the criteria selected by the user. The aim of this thesis was to test the tool and see if the results suggested were plausible, develop a cost calculation method for the PSH lines, and make suggestions for further development of the tool. During the process the tool presented many non-feasible pumped storage hydropower (PSH) connections. The area of Telemark was chosen for the more detailed study. The results were discussed and some improvements were suggested for further development of the tool. Also a sensitivity test was done to see which of the parameters set by the user are the most relevant for the PSH connection suggestion. From a range of the most promising PSH plants suggested by the tool, the one between Songavatn and Totak was chosen for a case study, where there already exists a power plant between both reservoirs. A new Pumped Storage Plant was designed with a power production of 1200 MW. There are still many topics open to discussion, such as how to deal with environmental restrictions, or how to deal with inflows and outflows of the reservoirs from the existing power plants. Consequently the GIS-tool can be a very useful tool to establish the best possible connections between existing reservoirs and dams, but it still needs a deep study and the creation of new parameters for the user.
Resumo:
Atmospheric emissions from road transport have increased all around the world during the last decades more rapidly than from other pollution sources. For instance, they contribute to more than 25% of total CO, CO2, NOx, and fine particle emissions in most of the European countries. This situation shows the importance of road transport when complying with emission ceilings and air quality standards applied to these pollutants. This paper presents a modelling system to perform atmospheric emission projections (simultaneously both air quality pollutants and greenhouse gases) from road transport including the development of a tailored software tool (EmiTRANS) as a planning tool. The methodology has been developed with two purposes: 1) to obtain outputs used as inputs to the COPERT4 software to calculate emission projections and 2) to summarize outputs for policy making evaluating the effect of emission abatement measures for a vehicle fleet. This methodology has been applied to the calculation of emission projections in Spain up to 2020 under several scenarios, including a sensitivity analysis useful for a better interpretation and confidence building on the results. This case study demonstrates the EmiTRANS applicability to a country, and points out the need for combining both technical and non-technical measures (such as behavioural changes or demand management) to reduce emissions, indirectly improving air quality and contributing to mitigate climate change.
Resumo:
Civil buildings are not specifically designed to support blast loads, but it is important to take into account these potential scenarios because of their catastrophic effects, on persons and structures. A practical way to consider explosions on reinforced concrete structures is necessary. With this objective we propose a methodology to evaluate blast loads on large concrete buildings, using LS-DYNA code for calculation, with Lagrangian finite elements and explicit time integration. The methodology has three steps. First, individual structural elements of the building like columns and slabs are studied, using continuum 3D elements models subjected to blast loads. In these models reinforced concrete is represented with high precision, using advanced material models such as CSCM_CONCRETE model, and segregated rebars constrained within the continuum mesh. Regrettably this approach cannot be used for large structures because of its excessive computational cost. Second, models based on structural elements are developed, using shells and beam elements. In these models concrete is represented using CONCRETE_EC2 model and segregated rebars with offset formulation, being calibrated with continuum elements models from step one to obtain the same structural response: displacement, velocity, acceleration, damage and erosion. Third, models basedon structural elements are used to develop large models of complete buildings. They are used to study the global response of buildings subjected to blast loads and progressive collapse. This article carries out different techniques needed to calibrate properly the models based on structural elements, using shells and beam elements, in order to provide results of sufficient accuracy that can be used with moderate computational cost.
Resumo:
Mathematical models used for the understanding of coastal seabed morphology play a key role in beach nourishment projects. These projects have become the fundamental strategy for coastal maintenance during the last few years. Accordingly, the accuracy of these models is vital to optimize the costs of coastal regeneration projects. Planning of such interventions requires methodologies that do not generate uncertainties in their interpretation. A study and comparison of mathematical simulation models of the coastline is carried out in this paper, as well as elements that are part of the model that are a source of uncertainty. The equilibrium profile (EP) and the offshore limit corresponding to the depth of closure (DoC) have been analyzed taking into account different timescale ranges. The results have thus been compared using data sets from three different periods which are identified as present, past and future. Accuracy in data collection for the beach profiles and the definition of the median grain size calculation using collected samples are the two main factors that have been taken into account in this paper. These data can generate high uncertainties and can produce a lack of accuracy in nourishment projects. Together they can generate excessive costs due to possible excess or shortage of sand used for the nourishment. The main goal of this paper is the development of a new methodology to increase the accuracy of the existing equilibrium beach profile models, providing an improvement to the inputs used in such models and in the fitting of the formulae used to obtain seabed shape. This new methodology has been applied and tested on Valencia's beaches.
Resumo:
The increase of building pathologies related to the use of stone materials and the use of ventilated stone veneers, requires the reformulation of design concepts in building façades and also the reformulation of the architectural project. The aim of this paper is to identify, analyze and evaluate synthetically building pathologies in stone ventilated façades in order to obtain the main technical conditions to be considered in the architectural design, by interpreting its mechanical behavior and capabilities to prevent such pathologies and to ensure the proper features during the building lifetime. The methodology is based on both laboratory stone tests and in situ tests about construction systems, by analyzing physical and mechanical behavior of the outer layer in relation to other building requirements. The results imply the need of proper sizing, specific quality control and practical application of calculation methods, to control high concentration pressures in ventilated façades by reaching appropriate project solutions. In conclusion, the research about different pathologies of stone ventilated façades, the study of their mechanical behavior, their anchorage and their connection with their constructive aspects, will help to improve the construction quality of the stone ventilated façade in buildings and to enhance the use of natural stone in modern architecture.
Resumo:
Methods for the calculation of complexity have been investigated as a possible alternative for the analysis of the dynamics of molecular systems. “Computational mechanics” is the approach chosen to describe emergent behavior in molecular systems that evolve in time. A novel algorithm has been developed for symbolization of a continuous physical trajectory of a dynamic system. A method for calculating statistical complexity has been implemented and tested on representative systems. It is shown that the computational mechanics approach is suitable for analyzing the dynamic complexity of molecular systems and offers new insight into the process.
Resumo:
A felelős vállalatirányítás egyik stratégiai jelentőségű tényezője a vállalati szintű kockázatkezelés, mely napjaink egyik legnagyobb kihívást jelentő területe a vállalatvezetés számára. A hatékony vállalati kockázatkezelés nem valósulhat meg kizárólag az általános, nemzetközi és hazai szakirodalomban megfogalmazott kockázatkezelési alapelvek követése mentén, a kockázatkezelési rendszer kialakítása során figyelembe kell venni mind az iparági, mind az adott vállalatra jellemző sajátosságokat. Mindez különösen fontos egy olyan speciális tevékenységet folytató vállalatnál, mint a villamosenergia-ipari átviteli rendszerirányító társaság (transmission system operator, TSO). A cikkben a magyar villamosenergia-ipari átviteli rendszerirányító társasággal együttműködésben készített kutatás keretében előálló olyan komplex elméleti és gyakorlati keretrendszert mutatnak be a szerzők, mely alapján az átviteli rendszerirányító társaság számára kialakítottak egy új, területenként egységes kockázatkezelési módszertant (fókuszban a kockázatok azonosításának és számszerűsítésének módszertani lépéseivel), mely alkalmas a vállalati szintű kockázati kitettség meghatározására. _______ This study handles one of today’s most challenging areas of enterprise management: the development and introduction of an integrated and efficient risk management system. For companies operating in specific network industries with a dominant market share and a key role in the national economy, such as electricity TSO’s, risk management is of stressed importance. The study introduces an innovative, mathematically and statistically grounded as well as economically reasoned management approach for the identification, individual effect calculation and summation of risk factors. Every building block is customized for the organizational structure and operating environment of the TSO. While the identification phase guarantees all-inclusivity, the calculation phase incorporates expert techniques and Monte Carlo simulation and the summation phase presents an expected combined distribution and value effect of risks on the company’s profit lines based on the previously undiscovered correlations between individual risk factors.
Resumo:
The aim of this paper is to build the stated preference method into the social discount rate methodology. The first part of the paper presents the results of a survey about stated time preferences through pair-choice decision situations for various topics and time horizons. It is assumed that stated time preferences differ from calculated time preferences and that the extent of stated rates depends on the time period, and on how much respondents are financially and emotionally involved in the transactions. A significant question remains: how can the gap between the calculation and the results of surveys be resolved, and how can the real time preferences of individuals be interpreted using a social time preference rate. The second part of the paper estimates the social time preference rate for Hungary using the results of the survey, while paying special attention to the pure time preference component. The results suggest that the current method of calculation of the pure time preference rate does not reflect the real attitudes of individuals towards future generations.
Resumo:
Multiphase flows, type oil–water-gas are very common among different industrial activities, such as chemical industries and petroleum extraction, and its measurements show some difficulties to be taken. Precisely determining the volume fraction of each one of the elements that composes a multiphase flow is very important in chemical plants and petroleum industries. This work presents a methodology able to determine volume fraction on Annular and Stratified multiphase flow system with the use of neutrons and artificial intelligence, using the principles of transmission/scattering of fast neutrons from a 241Am-Be source and measurements of point flow that are influenced by variations of volume fractions. The proposed geometries used on the mathematical model was used to obtain a data set where the thicknesses referred of each material had been changed in order to obtain volume fraction of each phase providing 119 compositions that were used in the simulation with MCNP-X –computer code based on Monte Carlo Method that simulates the radiation transport. An artificial neural network (ANN) was trained with data obtained using the MCNP-X, and used to correlate such measurements with the respective real fractions. The ANN was able to correlate the data obtained on the simulation with MCNP-X with the volume fractions of the multiphase flows (oil-water-gas), both in the pattern of annular flow as stratified, resulting in a average relative error (%) for each production set of: annular (air= 3.85; water = 4.31; oil=1.08); stratified (air=3.10, water 2.01, oil = 1.45). The method demonstrated good efficiency in the determination of each material that composes the phases, thus demonstrating the feasibility of the technique.