999 resultados para Cable-Driven Parallel Manipulator


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, the architectures of three degrees of freedom (3-DoF) spatial, fully parallel manipulators (PMs), whose limbs are structurally identical, are obtained systematically. To do this, the methodology followed makes use of the concepts of the displacement group theory of rigid body motion. This theory works with so-called 'motion generators'. That is, every limb is a kinematic chain that produces a certain type of displacement in the mobile platform or end-effector. The laws of group algebra will determine the actual motion pattern of the end-effector. The structural synthesis is a combinatorial process of different kinematic chains' topologies employed in order to get all of the 3-DoF motion pattern possibilities in the end-effector of the fully parallel manipulator.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

利用柔索的弹性及驱动冗余性构造了一种3自由度并联柔索驱动变刚度操作臂,在静力学与刚度分析的基础上,进行刚度控制研究。首先,将柔索驱动力映射到关节空间,并分析等效关节力与柔索张力和外力的关系, 提出该操作臂的三维力矢量闭合原理。根据微分变换原理进行刚度分析,得到关节刚度矩阵及操作手刚度矩阵, 并进行数值算例分析,结果表明:刚度与柔索的张力有关,调节柔索张力可以改变系统刚度。最后,采用位置与张力混合控制的策略,对该变刚度操作臂进行了刚度控制,并进行了仿真验证。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

以一种3自由度并联柔索驱动机器人为研究对象,研究这种并联柔性系统的控制规律。考虑到运动描述的唯一性及易测性,取约束关节的位置作为广义关节变量,用以描述操作臂的运动状态。在此基础上分析了操作臂的运动学和静力学关系,建立了并联柔性系统的动力学模型。然后,以轨迹控制为目标,分别基于刚性模型和柔性模型设计控制器,并对系统的性能进行分析和仿真。结果表明:基于刚性模型控制器的性能较差,而基于柔性模型的奇异摄动方法则可以获得较好的控制效果。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

提出一种新型并联机器人机构 ,利用张紧柔索驱动该并联机器人·通过运动学和动力学分析、工作空间分析、轨迹规划、误差分析 ,设计并制作了模型样机本体、驱动与控制模块 ,开发了机器人语言 ,控制模型样机完成指定动作·实验结果表明 ,这种新型并联机器人是可行的 ,适用于轻型机床等设备·该机器人在某一速度范围内工作时 ,会产生较明显的振动 ,并伴有噪声 ,因此要提高机器人的性能还必须设法抑制其振动

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a simple and available system for manipulation of heavy tools by low powered manipulator for industrial applications. In the heavy manufacturing industries, sometimes, heavy tools are employed for different types of work. But the application of robots with heavy tools is not possible due to the limited torque limits of actuators. Suspended tool systems (STS) have been proposed to manipulate heavy tools by low powered robot-arm for this purpose. A low powered five-bar direct-drive parallel manipulator is designed and constructed to manipulate heavy tools suspended from a spring balancer. The validity, usefulness, and effectiveness of the suspended tool system are shown by experimental results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a solution to the inverse kinematics of 6-RRCRR parallel manipulators with orthogonal non-intersecting RR-joint configuration. The inverse kinematics solution of such parallel robots compared with that of parallel robots with orthogonal intersecting RR-joint or universal joint configuration is more complex due to the existence of RR-joint variables. A novel methodology is established to define 6 independent variables of the actuators and 12 dependent RR-joint variables using the pose of the mobile platform with respect to the base frame. The constraint of RR-joints are analysed and the numerical algorithm to obtain joint variables is assessed. The forward kinematics of a 6- RRCRR parallel manipulator is modelled and computational analysis is performed in order to numerically verify the accuracy and effectiveness of the proposed methodology for the inverse kinematics analysis. Numerical results of a trajectory tracking simulation are provided. The results verify high accuracy for the proposed inverse kinematics solution of this special family of parallel micromanipulators.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper investigates axis-symmetric parallel manipulators, composed of a central base column and an arm system able to rotate around this column. The arm system includes several actuated upper arms, each connected to a manipulated platform by one or more lower arm linkages. Such manipulators feature an extensive positional workspace in relation to the manipulator footprint and equal manipulator properties in all radial half-planes defined by the common rotation-axis of the upper arms. The similarities between planar manipulators exclusively employing 2-degrees-of-freedom (2-DOF) lower arm linkages and lower mobility spatial manipulators only utilising 5-DOF lower arm linkages are analysed. The 2-DOF linkages are composed of a link with a 1-DOF hinge on both ends whilst the 5-DOF linkages utilise 3-DOF spherical joints and 2-DOF universal joints. By employing a proposed linkage substitution scheme, it is shown how a wide range of spatial axis-symmetric parallel manipulators can be derived from a limited range of planar manipulators of the same type.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Parallel manipulators provide several benefits compared to serial manipulators of similar size. These advantages typically include higher speed and acceleration, improved position accuracy and increased stiffness. However, parallel manipulators also suffer from several disadvantages. These drawbacks commonly include a small ratio of the positional workspace relative to the manipulator footprint and a limited rotational capability of the manipulated platform. A few parallel manipulators featuring a large ratio of the positional workspace relative to the footprint have been proposed. This paper investigates the feasibility of employing gearing to extend the range of the end-effector rotation of such mechanisms. The objective is to achieve parallel manipulators where both the positional and rotational workspace are comparable to that of serial manipulators.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

 Determining an analytical solution to the inverse kinematics problem for a parallel manipulator is typically a straightforward problem. However, lower mobility parallel manipulators with 2-5 degrees of freedom (DOFs) often suffer from an unwanted parasitic motion in one or more DOFs. For such manipulators, the inverse kinematics problem can be significantly more difficult. This paper contains an analysis of the inverse kinematics problem for a class of 3-DOF parallel manipulators with axis-symmetric arm systems. All manipulators in the studied class exhibit parasitic motion in one DOF. For manipulators in the studied class, the general solution to the inverse kinematics problem is reduced to solving a univariate equation, while analytical solutions are presented for several important special cases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Singularities of robot manipulators have been intensely studied in the last decades by researchers of many fields. Serial singularities produce some local loss of dexterity of the manipulator, therefore it might be desirable to search for singularityfree trajectories in the jointspace. On the other hand, parallel singularities are very dangerous for parallel manipulators, for they may provoke the local loss of platform control, and jeopardize the structural integrity of links or actuators. It is therefore utterly important to avoid parallel singularities, while operating a parallel machine. Furthermore, there might be some configurations of a parallel manipulators that are allowed by the constraints, but nevertheless are unreachable by any feasible path. The present work proposes a numerical procedure based upon Morse theory, an important branch of differential topology. Such procedure counts and identify the singularity-free regions that are cut by the singularity locus out of the configuration space, and the disjoint regions composing the configuration space of a parallel manipulator. Moreover, given any two configurations of a manipulator, a feasible or a singularity-free path connecting them can always be found, or it can be proved that none exists. Examples of applications to 3R and 6R serial manipulators, to 3UPS and 3UPU parallel wrists, to 3UPU parallel translational manipulators, and to 3RRR planar manipulators are reported in the work.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nowadays robots have made their way into real applications that were prohibitive and unthinkable thirty years ago. This is mainly due to the increase in power computations and the evolution in the theoretical field of robotics and control. Even though there is plenty of information in the current literature on this topics, it is not easy to find clear concepts of how to proceed in order to design and implement a controller for a robot. In general, the design of a controller requires of a complete understanding and knowledge of the system to be controlled. Therefore, for advanced control techniques the systems must be first identified. Once again this particular objective is cumbersome and is never straight forward requiring of great expertise and some criteria must be adopted. On the other hand, the particular problem of designing a controller is even more complex when dealing with Parallel Manipulators (PM), since their closed-loop structures give rise to a highly nonlinear system. Under this basis the current work is developed, which intends to resume and gather all the concepts and experiences involve for the control of an Hydraulic Parallel Manipulator. The main objective of this thesis is to provide a guide remarking all the steps involve in the designing of advanced control technique for PMs. The analysis of the PM under study is minced up to the core of the mechanism: the hydraulic actuators. The actuators are modeled and experimental identified. Additionally, some consideration regarding traditional PID controllers are presented and an adaptive controller is finally implemented. From a macro perspective the kinematic and dynamic model of the PM are presented. Based on the model of the system and extending the adaptive controller of the actuator, a control strategy for the PM is developed and its performance is analyzed with simulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper introduces a screw theory based method termed constraint and position identification (CPI) approach to synthesize decoupled spatial translational compliant parallel manipulators (XYZ CPMs) with consideration of actuation isolation. The proposed approach is based on a systematic arrangement of rigid stages and compliant modules in a three-legged XYZ CPM system using the constraint spaces and the position spaces of the compliant modules. The constraint spaces and the position spaces are firstly derived based on the screw theory instead of using the rigid-body mechanism design experience. Additionally, the constraint spaces are classified into different constraint combinations, with typical position spaces depicted via geometric entities. Furthermore, the systematic synthesis process based on the constraint combinations and the geometric entities is demonstrated via several examples. Finally, several novel decoupled XYZ CPMs with monolithic configurations are created and verified by finite elements analysis. The present CPI approach enables experts and beginners to synthesize a variety of decoupled XYZ CPMs with consideration of actuation isolation by selecting an appropriate constraint and an optimal position for each of the compliant modules according to a specific application.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hexarot is a robotic manipulator that belongs to the family of axis symmetric parallel mechanisms. The robot is able to move the robot platform or tool center point in six degrees of freedom (DOF). This paper presents the kinematics model of the robot including the inverse and forward kinematics, and its time derivatives. Then using the kinematics formulations, investigation of the nonlinear motion of the Hexarot robot for a desired linear motion path is performed. For this purpose, the concept of curvature of the robot path is used for measuring the nonlinearity of the actual motion of the robot. The nonlinear motion error of the robot is analyzed for the scenario where the platform moves on a linear path between two arbitrary points of the robot workspace. The effects of different parameters on the nonlinear motion error of the mechanism are demonstrated and strategies for motions with low error values are proposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since precise linear actuators of a compliant parallel manipulator suffer from their inability to tolerate the transverse motion/load in the multi-axis motion, actuation isolation should be considered in the compliant manipulator design to eliminate the transverse motion at the point of actuation. This paper presents an effective design method for constructing compliant parallel manipulators with actuation isolation, by adding the same number of actuation legs as the number of the DOF (degree of freedom) of the original mechanism. The method is demonstrated by two design case studies, one of which is quantitatively studied by analytical modelling. The modelling results confirm possible inherent issues of the proposed structure design method such as increased primary stiffness, introduced extra parasitic motions and cross-axis coupling motions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[ES]El objetivo del presente TFG es el Análisis Dinámico de mecanismos paralelos según las necesidades de la mecatrónica. La mecatrónica requiere expresiones explícitas de las fuerzas motoras que sólo dependen de las propias posiciones, velocidades y aceleraciones en los accionamientos. Ello requiere métodos avanzados de la mecánica analítica de sólido rígido. Concretamente se han desarrollado la ecuación de Lagrange modificada (según [11]) y la ecuación de Boltzmann-Hamel modificada, siendo esta última una aportación de este TFG. Como aplicación práctica se ha programado un modelo mecatrónico para un manipulador paralelo 5R y se ha optimizado el diseño de una Multi Axis Simulation Table 3PRS.