117 resultados para CZOCHRALSKI METHDO
Resumo:
0.5 at.% Yb:YAlO3(YAP), 5 at.% Yb:YAP and 15 at.% Yb:YAP were grown using the Czochralski method. Their absorption and fluorescence spectra were measured at room temperature and their emission line shape was calculated using the method of reciprocity. It was observed that the fluorescence spectra changed appreciably with the increasing of Yb concentration. For 0.5 at.% Yb:YAP, the line shape of fluorescence is very similar with the calculated emission line shape; with the increasing of Yb doping concentration, the line shape of fluorescence is very different from the calculated emission line shape. These phenomena are caused by the strong self-absorption at 979 and 999 nm for Yb:YAP. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Yb:YAG single crystals with Yb doping concentration 5.4, 16.3, 27.1, 53.6, and 100 at.% were grown by the Czochralski process. The effects of Yb concentration on the absorption spectra (190-1 100nm), fluorescence spectra under 940nm and X-ray excitation were studied. The concentration quenching of fluorescence was observed when the Yb doping concentration reaches to as high as 27.1 at.% for Yb:YAG. Under 940 nm excitation, the influence of the self-absorption at 969 and 1029 nrn on the fluorescence spectra is not evident when the Yb doping concentration is as high as 27.1 at.%. However, it can greatly change the shape of fluorescence spectra of Yb:YAG when the Yb doping concentration reaches to above 53.6 at.%. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
A new Yb-doped oxyorthosilicate laser crystal, Yb:Gd2SiO5 (Yb:GSO), has been grown by the Czochralski (Cz) method. The crystal structure was determined by means of X-ray diffraction analysis. Room temperature absorption and fluorescence spectra of Yb3+ ions in GSO crystal were measured. Then. spectroscopic parameters of Yb:GSO were calculated and compared with those of another Yb-doped oxyorthosilicate crystal Yb:YSO. Results indicated that Yb:GSO crystal seemed to be a very promising laser gain media in generating ultra-pulses and tunable solid state laser applications. As expected, the output power of 2.72 W at 1089 nm was achieved in Yb:GSO crystal with absorbed power of only 4.22 W at 976 nm, corresponding to the slope efficiency of 71.2% through the preliminary laser experiment. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
High-quality Nd:LuVO4 single crystal was successfully grown by Czochralski method. The assessment of the crystalline quality by the chemical etching method and Conoscope image was reported. The absorption spectra from 300 to 1000 nm and emission spectra from 960 to 1450 nm of Nd: LuVO4 were measured. Laser performance was achieved with Nd:LUVO4 crystal for the transition of F-4(3/2) -> I-4(11/2) (corresponding wavelength 1065.8 nm) in an actively Q-switched operation, and the average output power reached 5.42 W at a pulse repetition frequency (PRF) of 40 kHz under pump power of 18 W, giving an optical conversion efficiency of 30.1%. The pulse energy and peak power reached 138 mu J and 16.2 kW at PRF of 25 kHz under pump power of 14.2 W, and the pulse duration was 8.5 ns. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Yb3Al5O12 single crystal has been grown by Czochralski (CZ) method. The absorption spectrum was investigated at low temperature and the electronic energy levels for F-2(5/2) multiplet of Yb3+ in YbAG was proposed. The up-conversion emission of the crystal under 940 nm diode pumping and the X-ray excited luminescence (XEL) features of the crystal were also studied. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Undoped Y2SiO5 single crystal was grown by the Czochralski method. The samples were optically polished after orienting and cutting. The rhombus and quadrangular dislocation etching pits, the low-angle grain boundaries and the inclusions in the samples were observed using optical microscope and scanning electron microscope. The absorption spectra were measured before and after H-2 annealing or air annealing. The absorption edge of Y2SiO5 crystal was determined to be about 202 nm. The absorption coefficient of Y2SiO5 crystal decreased after H-2 annealing and obviously increased after air annealing. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
研究了中子辐照对蓝宝石(α-Al2O3)单晶体缺陷形成及光学性能的影响,对采用提拉法与温度梯度法生长的蓝宝石晶体进行中子辐照,通过对比辐照前后的吸收及荧光光谱变化,发现辐照使得蓝宝石晶体内形成F、F^+和F2^+色心缺陷,但不同方法生长的晶体样品中色心浓度差异明显。其中提拉法样品的F心浓度要高于温度梯度法样品,而温度梯度法样品中F^+色心浓度要高于提拉法样品。分析表明,这与两种方法生长的晶体中杂质含量差异有关。通过研究辐照后晶体的热致发光谱发现提拉法与温度梯度法生长的蓝宝石晶体分别在145℃与150℃有明
Resumo:
采用中频感应提拉法生长出尺寸为Ф60mm×110mm的Ce:Lu1.6Y0.4SiO5(LYSO)晶体,与LSO晶体相比,LYSO晶体的优势是提高了晶体质量、降低了熔点和原料成本等.在室温下测试了LYSO晶体的透过光谱、激发光谱和发射光谱,结果表明Y的加入使LSO晶体的吸收边向短波方向偏移.Ce^3+的4f^1→5d^1跃迁吸收导致紫外区产生三个吸收带.发射光谱具有Ce^3+典型的双峰特征,经Gaussian多峰值拟合,双峰395nm和418nm归属于Ce1发光中心,而435nm的发光峰与Ce2发光中心有
Resumo:
In this paper, high optical quality cerium-doped lutetium pyrosilicate(LPS:Ce) crystal has been grown by Czochralski method with the seed oriented along cleavage plane (1 1 0). The structure, segregation coefficient of Ce3+ and optical characterization of LPS:Ce crystal have been compared with those of LSO:Ce crystal. The results show that LPS:Ce has the advantage over LSO:Ce by having a larger segregation coefficient of Ce3+, lower cost of starting material, lower melting point and only one luminescence mechanism. Thus, LPS:Ce crystal offers an attractive alternative to LSO:Ce for scintillator applications. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Sm3+-doped yttrium aluminum perovskite (YAP) single crystal was grown by Czochralski (CZ) method. The absorption and fluorescence spectra along the crystallographic axis b were measured at room temperature. Judd-Ofelt theory was used to calculate the intensity parameters (Omega(t)), the spontaneous emission probability, the branching ratio and the radiative lifetime of the state (4)G(5/2). The peak emission cross-sections were also estimated at 567, 607, and 648 nm wavelengths. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Gd2SiO5 (GSO) single crystal codoped with Yb3+ and Er3+ (Abbr. as Er:Yb:GSO) was successfully grown by the Czochralski (CZ) method for the first time and the spectral characteristics were investigated. The absorption and fluorescence spectra were measured. The emission lifetime of the I-4(13/2)-Er-level was measured to be 5.84ms and the emission cross-section at 1529nm was calculated to be 1.03 x 10(-20) cm(2). The results indicate that Er:Yb:GSO is a potential laser material at similar to 1. 55 mu m wavelength region. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
For the first time, a high optical quality 10 at.% Yb3+-doped gadolinium oxyorthosilicate laser crystal Gd2SiO5 (GSO) was grown by the Czochralski (Cz) method. The segregation coefficient of Yb3+ was studied by the inductively coupled plasma atomic emission spectrometer (ICP-AES) method. The crystal structure has monoclinic symmetry with space group P2(1)/c; this was determined by means of an x-ray diffraction analysis. The absorption spectra, fluorescence spectra and fluorescence decay curves of Yb3+ ions in a GSO crystal at room temperature were also studied. Then, the spectroscopic parameters of Yb:GSO were calculated. The advantages of the Yb:GSO crystal include high crystal quality, quasi-four-level laser operating scheme, high absorption cross-sections and particularly broad emission bandwidth (similar to 72 nm). The results indicated that the Yb:GSO crystal seemed to be a very promising laser gain medium in diode-pumped femtosecond laser and tunable solid state laser applications when LD pumped at 940 and 980 nm.
Resumo:
采用提拉法成功生长了纯LaAlO3和掺铈的LaAlO3单晶体,测试了它们的远红外吸收谱,紫外吸收谱,荧光谱,根据吸收光谱确定了晶体中Ce^3+的能级结构,利用这一能级结构模型较好地解释了Ce:LaAlO3晶体的荧光光谱。
Resumo:
Yb: YAlO3 (YAP) (15 at %) and Yb: Y3Al5O12 (YAG)(15 at %) have been grown using the Czochralski method. Their absorption and fluorescence spectra were measured at room temperature and important spectroscopic parameters were calculated. Through the comparison of spectroscopic parameters of Yb:YAP and Yb: YAG, all results indicate that 15 at % Yb:YAP crystal is a potential candidate used for compact, efficient thin chip lasers when the laser output wavelength is 1012 or 103 8 nm. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Sapphire crystals, 140 mm in diameter and 90 turn in height, have been grown by temperature gradient techniques (TGT). The growth direction of the boule was fixed by means of Lane X-ray diffraction. A prominent 204 nm absorption band in TGT-Al2O3. which does not appear in single crystals grown by Czochralski method has been studied. Analysis further substantiates the F-center model of this band. Two relatively weaker bands absorbing at 232 nm and 254 nm were ascribed to F+ centers. F-type centers concentration was determined using Smakula's equation. (c) 2005 Elsevier B.V. All rights reserved.