988 resultados para CYTOSOLIC CA2


Relevância:

60.00% 60.00%

Publicador:

Resumo:

We investigated the role of reactive oxygen species (ROS) and nitric oxide (NO) in ethanol-induced relaxation. Vascular reactivity experiments showed that ethanol (0.03-200 mmol/L) induced relaxation in endothelium-intact and denuded rat aortic rings isolated from male Wistar rats. Pre-incubation of intact or denuded rings with L-NAME (non selective NOS inhibitor, 100 mu mol/L), 7-nitroindazole (selective nNOS inhibitor, 100 mu mol/L), ODQ (selective inhibitor of guanylyl cyclase enzyme, I mu mol/L), glibenclamide (selective blocker of ATP-sensitive K+ channels, 3 mu mol/L) and 4-aminopyridine (selective blocker of voltage-dependent K+ channels, 4-AP, 1 mmol/L) reduced ethanol-induced relaxation. Similarly, tiron (superoxide anion (O-2(-)) scavenger, 1 mmol/L) and catalase (hydrogen peroxide (H2O2) scavenger, 300 U/mL) reduced ethanol-induced relaxation to a similar extent in both endothelium-intact and denuded rings. Finally, prodifen (non-selective cytochrome P450 enzymes inhibitor, 10 mu mol/L) and 4-methylpyrazole (selective alcohol dehydrogenase inhibitor, 10 mu mol/L) reduced ethanol-induced relaxation. In cultured aortic vascular smooth muscle cells (VSMCs), ethanol stimulated generation of NO, which was significantly inhibited by L-NAME. In endothelial cells, flow cytometry studies showed that ethanol increased cytosolic Ca2+ concentration ([Ca2+]c), O-2(-) and cytosolic NO concentration ([NO]c). Tiron inhibited ethanol-induced increase in [Ca-2]c and [NO]c. The major new finding of this work is that ethanol induces relaxation via redox-sensitive and NO-cGMP-dependent pathways through direct effects on ROS production and NO signaling. These findings identify putative molecular mechanisms whereby ethanol, at pharmacological concentrations, influences vascular reactivity. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Introduction and aims of the research Nitric oxide (NO) and endocannabinoids (eCBs) are major retrograde messengers, involved in synaptic plasticity (long-term potentiation, LTP, and long-term depression, LTD) in many brain areas (including hippocampus and neocortex), as well as in learning and memory processes. NO is synthesized by NO synthase (NOS) in response to increased cytosolic Ca2+ and mainly exerts its functions through soluble guanylate cyclase (sGC) and cGMP production. The main target of cGMP is the cGMP-dependent protein kinase (PKG). Activity-dependent release of eCBs in the CNS leads to the activation of the Gi/o-coupled cannabinoid receptor 1 (CB1) at both glutamatergic and inhibitory synapses. The perirhinal cortex (Prh) is a multimodal associative cortex of the temporal lobe, critically involved in visual recognition memory. LTD is proposed to be the cellular correlate underlying this form of memory. Cholinergic neurotransmission has been shown to play a critical role in both visual recognition memory and LTD in Prh. Moreover, visual recognition memory is one of the main cognitive functions impaired in the early stages of Alzheimers disease. The main aim of my research was to investigate the role of NO and ECBs in synaptic plasticity in rat Prh and in visual recognition memory. Part of this research was dedicated to the study of synaptic transmission and plasticity in a murine model (Tg2576) of Alzheimers disease. Methods Field potential recordings. Extracellular field potential recordings were carried out in horizontal Prh slices from Sprague-Dawley or Dark Agouti juvenile (p21-35) rats. LTD was induced with a single train of 3000 pulses delivered at 5 Hz (10 min), or via bath application of carbachol (Cch; 50 M) for 10 min. LTP was induced by theta-burst stimulation (TBS). In addition, input/output curves and 5Hz-LTD were carried out in Prh slices from 3 month-old Tg2576 mice and littermate controls. Behavioural experiments. The spontaneous novel object exploration task was performed in intra-Prh bilaterally cannulated adult Dark Agouti rats. Drugs or vehicle (saline) were directly infused into the Prh 15 min before training to verify the role of nNOS and CB1 in visual recognition memory acquisition. Object recognition memory was tested at 20 min and 24h after the end of the training phase. Results Electrophysiological experiments in Prh slices from juvenile rats showed that 5Hz-LTD is due to the activation of the NOS/sGC/PKG pathway, whereas Cch-LTD relies on NOS/sGC but not PKG activation. By contrast, NO does not appear to be involved in LTP in this preparation. Furthermore, I found that eCBs are involved in LTP induction, but not in basal synaptic transmission, 5Hz-LTD and Cch-LTD. Behavioural experiments demonstrated that the blockade of nNOS impairs rat visual recognition memory tested at 24 hours, but not at 20 min; however, the blockade of CB1 did not affect visual recognition memory acquisition tested at both time points specified. In three month-old Tg2576 mice, deficits in basal synaptic transmission and 5Hz-LTD were observed compared to littermate controls. Conclusions The results obtained in Prh slices from juvenile rats indicate that NO and CB1 play a role in the induction of LTD and LTP, respectively. These results are confirmed by the observation that nNOS, but not CB1, is involved in visual recognition memory acquisition. The preliminary results obtained in the murine model of Alzheimers disease indicate that deficits in synaptic transmission and plasticity occur very early in Prh; further investigations are required to characterize the molecular mechanisms underlying these deficits.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Calcium (Ca2+) ist ein ubiquitr vorkommendes Signalmolekl, das an der Regulation zahlreicher zellulrer Prozesse, von der Proliferation bis zum programmierten Zelltod, beteiligt ist. Daher mssen die intrazellulren Ca2+-Spiegel streng kontrolliert werden. Vernderungen der Ca2+-Homostase whrend der altersassoziierten Neurodegeneration knnen dazu beitragen, dass Neuronen vulnerabler sind. So wurden erhhte Ca2+-Konzentrationen in gealterten Neuronen, begleitet von einer erhhten Vulnerabilitt, beobachtet (Hajieva et al., 2009a). Weiterhin wird angenommen, dass der selektive Untergang von dopaminergen Neuronen bei der Parkinson Erkrankung auf eine erhhte Ca2+-Last zurckzufhren sein knnte, da diese Neuronen einem stndigen Ca2+-Influx,rnaufgrund einer besonderen Isoform (CaV 1.3) spannungsgesteuerter Ca2+-Kanle des L-Typs, ausgesetzt sind (Chan et al., 2007). Bislang wurden die molekularen Mechanismen, die einem Ca2+-Anstieg zu Grunde liegen und dessen Auswirkung jedoch nicht vollstndig aufgeklrt und daher in der vorliegenden Arbeit untersucht. Um Vernderungen der Ca2+-Homostase whrend der altersassoziiertenrnNeurodegeneration zu analysieren wurden primre Mittelhirnzellen aus Rattenembryonen und SH-SY5Y-Neuroblastomazellen mit dem Neurotoxin 1-Methyl-4-Phenyl-Pyridin (MPP+), das bei der Etablierung von Modellen der Parkinson-Erkrankung breite Anwendung findet, behandelt. Vernderungen der intrazellulren Ca2+-Konzentration wurden mit einem auf dem grn fluoreszierenden Protein (GFP)-basierten Ca2+-Indikator,rnCameleon cpYC 3.6 (Nagai et al., 2004), ermittelt. Dabei wurde in dieser Arbeit gezeigt, dass MPP+ die Abregulation der neuronenspezifischen ATP-abhngigen Ca2+-Pumpe der Plasmamembran (PMCA2) induziert, die mit der Ca2+-ATPase des endoplasmatischen Retikulums (SERCA) und dem Na+/Ca2+-Austauscher (NCX) das zellulre Ca2+-Effluxsystem bildet, was zu einer erhhten zytosolischen Ca2+-Konzentration fhrt. Die PMCA2-Abnahme wurde sowohl auf Transkriptionsebene als auch auf Proteinebene demonstriert, whrend keine signifikanten Vernderungen der SERCA- und NCX-Proteinmengen festgestellt wurden. Als Ursache der Reduktion der PMCA2-Expression wurde eine Abnahme des Transkriptionsfaktors Phospho-CREB ermittelt, dessen Phosphorylierungsstatus abhngig von der Proteinkinase A (PKA) war. Dieser Mechanismus wurde einerseits unter MPP+-Einfluss und andererseits vermittelt durch endogene molekulare Modulatoren gezeigt. Interessanterweise konnten die durch MPP+ induzierte PMCA2-Abregulation und der zytosolische Ca2+-Anstieg durch die Aktivierung der PKA verhindert werden. Parallel dazu wurde eine MPP+-abhngige verringerte mitochondriale Ca2+-Konzentration nachgewiesen, welche mit einer Abnahme des mitochondrialen Membranpotentials korrelierte. Darber hinaus kam es als Folge der PMCA2-Abnahme zu einem verminderten neuronalen berleben.rnVernderungen der Ca2+-Homostase wurden auch whrend der normalen Alterung inrnprimren Fibroblasten und bei Musen nachgewiesen. Dabei wurden verringerte PMCA und SERCA-Proteinmengen in gealterten Fibroblasten, einhergehend mit einem Anstieg der zytosolischen Ca2+-Konzentration demonstriert. Weiterhin wurden verringerte PMCA2-Proteinmengen im Mittelhirn von gealterten Musen (C57B/6) detektiert.rnDer zellulre Ca2+-Efflux ist somit sowohl im Zuge der physiologischen Alterung als auch in einem altersbezogenen Krankheitsmodell beeintrchtigt, was das neuronale berleben beeinflussen kann. In zuknftige Studien soll aufgeklrt werden, welche Auswirkungen einer PMCA2-Reduktion genau zu dem Verlust von Neuronen fhren bzw. ob durch eine PMCA2-berexpression neurodegenerative Prozesse verhindert werden knnen.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Butyrate is a short-chain fatty acid (SCFA) closely related to the ketone body -hydroxybutyrate (BHB), which is considered to be the major energy substrate during prolonged exercise or starvation. During fasting, serum growth hormone (GH) rises concomitantly with the accumulation of BHB and butyrate. Interactions between GH, ketone bodies and SCFA during the metabolic adaptation to fasting have been poorly investigated to date. In this study, we examined the effect of butyrate, an endogenous agonist for the two G-protein-coupled receptors (GPCR), GPR41 and 43, on non-stimulated and GH-releasing hormone (GHRH)-stimulated hGH secretion. Furthermore, we investigated the potential role of GPR41 and 43 on the generation of butyrate-induced intracellular Ca2+ signal and its ultimate impact on hGH secretion. To study this, wt-hGH was transfected into a rat pituitary tumour cell line stably expressing the human GHRH receptor. Treatment with butyrate promoted hGH synthesis and improved basal and GHRH-induced hGH-secretion. By acting through GPR41 and 43, butyrate enhanced intracellular free cytosolic Ca2+. Gene-specific silencing of these receptors led to a partial inhibition of the butyrate-induced intracellular Ca2+ rise resulting in a decrease of hGH secretion. This study suggests that butyrate is a metabolic intermediary, which contributes to the secretion and, therefore, to the metabolic actions of GH during fasting.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

OSW-1 is a natural compound found in the bulbs of Orninithogalum saudersiae, a member of the lily family. This compound exhibits potent antitumor activity in vitro with the IC50 values in the low nanomolar concentration range and demonstrating its ability to kill drug resistant cancer cells. In an effort to discover the unknown mechanism of action of this novel compound as a potential anticancer agent, the main objective of this research project was to test the cytotoxicity of OSW-1 against various cancer lines, and to elucidate the biochemical and molecular mechanism(s) responsible for the anticancer activity of OSW-1. My initial investigation revealed that OSW-1 is effective in killing various cancer cells including pancreatic cancer cells and primary leukemia cells resistant to standard chemotherapeutic agents, and that non-malignant cells were less sensitive to this compound. Further studies revealed that in leukemia cells, OSW-1 causes a significant increase in cytosolic calcium and activates rapid calcium-dependent apoptosis by the intrinsic pathway. Additionally, OSW-1 treatment leads to the degradation of the ER chaperone GRP78/BiP implicated in the survival of cancer cells. Meanwhile, it shows a reduced sensitivity in respiration-deficient sub-clones of leukemia cells which had higher basal levels of Ca2+. Mechanistically, it was further demonstrated that cytosolic Ca2+ elevations were observed together with Na+ decreases in the cytosol, suggesting OSW-1 caused the calcium overload through inhibition of the Na+/Ca 2+exchanger (NCX). Although similar calcium disturbances were observed in pancreatic cancer cells, mechanistic studies revealed that autophagy served as an initial pro-survival mechanism subsequent to OSW-1 treatment but extended autophagy caused inevitable cell death. Furthermore, combination of OSW-1 with autophagy inhibitors significantly enhances the cytotoxicity against pancreatic cancer cells. Taken together, this study revealed the novel mechanism of OSW-1 which is through inhibition of the Na+/Ca2+ exchanger and provides a basis for using this compound in combination with other agents for the treatment of pancreatic cancer which is resistant to available anticancer drugs. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Programmed cell death is characterized by tightly controlled temporal and spatial intracellular Ca2+ responses that regulate the release of key proapoptotic proteins from mitochondria to the cytosol. Since apoptotic cells retain their ability to exclude membrane impermeable dyes, it is possible that the cells evoke repair mechanisms that, similar to those in normal cells, patch any damaged areas of the plasma membrane that preclude dye permeation. One critical distinction between plasma membrane repair in normal and apoptotic cells is the preservation of membrane lipid asymmetry. In normal cells, phosphatidylserine (PS) retains its normal asymmetric distribution in the inner membrane leaflet. In apoptotic cells, PS redistributes to the outer membrane leaflet by a Ca2+ dependent mechanism where it serves as a recognition ligand for phagocytes(1). In this study Ca 2+-specific fluorescent probes were employed to investigate the source of Ca2+ required for PS externalization. Experiments employing Rhod2-AM, calcium green 1, fura2-AM and the aqueous space marker FITC-dextran, demonstrated that exogenous Ca2+ imported with endocytotic vesicles into the cell was released into the cytosol in an apoptosis dependent manner. Labeling of the luminal side of the endocytotic vesicles with FITC-annexin 5, revealed that membrane lipid asymmetry was disrupted upon endosome formation. Specific labeling of the lysosomal luminal surface with the non-exchangeable membrane lipid probe, N-rhodamine-labeled-phosphatidylethanolamine (N-Rho-PE) and the lysosomal specific probe, lysotracker green, facilitated real-time monitoring of plasma membrane-to-endosome-to-lysosome transitions. Enforced elevation of cytosolic [Ca2+] with ionophore resulted in the redistribution of N-Rho-PE and PS from the inner membrane leaflet to the PM outer membrane leaflet. Identical results were obtained during apoptosis, however, the redistribution of both N-RhoPE and PS was dependent on the release of intra-lysosomal Ca2+ to the cytosol. Additional experiments suggested that lipid redistribution was dependent on the activity of lysosomal phospholipase A2 activity since lipid trafficking was abolished in the presence of chloroquine and lipase inhibitors. These data indicate that endosomal/lysosomal Ca2+ and the fusion of hybrid organelles to the plasma membrane regulates the externalization of PS during apoptosis. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In recent years, mitochondria have emerged as important targets of agonist-dependent increases in cytosolic Ca2+ concentration. Here, we analyzed the significance of Ca2+ signals for the modulation of organelle function by directly measuring mitochondrial and cytosolic ATP levels ([ATP]m and [ATP]c, respectively) with specifically targeted chimeras of the ATP-dependent photoprotein luciferase. In both HeLa cells and primary cultures of skeletal myotubes, stimulation with agonists evoking cytosolic and mitochondrial Ca2+ signals caused increases in [ATP]m and [ATP]c that depended on two parameters: (i) the amplitude of the Ca2+ rise in the mitochondrial matrix, and (ii) the availability of mitochondrial substrates. Moreover, the Ca2+ elevation induced a long-lasting priming that persisted long after agonist washout and caused a major increase in [ATP]m upon addition of oxidative substrates. These results demonstrate a direct role of mitochondrial Ca2+ in driving ATP production and unravel a form of cellular memory that allows a prolonged metabolic activation in stimulated cells.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, we report direct measurement of an influx of extracellular Ca2+ induced by gamete fusion in flowering plants. This result was obtained during maize in vitro fertilization with the use of an extracellular Ca2+-selective vibrating probe. Ca2+ influx recorded at the surface of isolated egg cells, with or without adhesion of a male sperm cell, was close to zero and stable over time. Gamete fusion, however, triggered a Ca2+ influx in the vicinity of the sperm entry site with a delay of 1.8 0.6 sec. The Ca2+ influx spread subsequently through the whole egg cell plasma membrane as a wavefront, progressing at an estimated rate of 1.13 msec1. Once established, Ca2+ influx intensities were sustained, monotonic and homogeneous over the whole egg cell, with an average peak influx of 14.92 pmolcm2sec1 and an average duration of 24.4 min. The wavefront spread of channel activation correlates well with the cytological modifications induced by fertilization, such as egg cell contraction, and with the cytosolic Ca2+ (c[Ca2+]) elevation previously reported. Calcium influx was inhibited effectively by gadolinium, possibly implicating mechanosensitive channels. Furthermore, artificial influxes created by incubation with Ca2+ ionophores mimicked some aspects of egg activation. Taken together, these results suggest that, during fertilization in higher plants, gamete membrane fusion starts the first embryonic events by channel opening and Ca2+ influx. In turn, c[Ca2+] may work as a trigger and possibly a space and time coordinator of many aspects of egg activation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The pancreatic acinar cell produces powerful digestive enzymes packaged in zymogen granules in the apical pole. Ca2+ signals elicited by acetylcholine or cholecystokinin (CCK) initiate enzyme secretion by exocytosis through the apical membrane. Intracellular enzyme activation is normally kept to a minimum, but in the often-fatal human disease acute pancreatitis, autodigestion occurs. How the enzymes become inappropriately activated is unknown. We monitored the cytosolic Ca2+ concentration ([Ca2+]i), intracellular trypsin activation, and its localization in isolated living cells with specific fluorescent probes and studied intracellular vacuole formation by electron microscopy as well as quantitative image analysis (light microscopy). A physiological CCK level (10 pM) eliciting regular Ca2+ spiking did not evoke intracellular trypsin activation or vacuole formation. However, stimulation with 10 nM CCK, evoking a sustained rise in [Ca2+]i, induced pronounced trypsin activation and extensive vacuole formation, both localized in the apical pole. Both processes were abolished by preventing abnormal [Ca2+]i elevation, either by preincubation with the specific Ca2+ chelator 1,2-bis(O-aminophenoxy)ethane-N,N-N,N-tetraacetic acid (BAPTA) or by removal of external Ca2+. CCK hyperstimulation evokes intracellular trypsin activation and vacuole formation in the apical granular pole. Both of these processes are mediated by an abnormal sustained rise in [Ca2+]i.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Abscisic acid (ABA) is a plant hormone involved in the response of plants to reduced water availability. Reduction of guard cell turgor by ABA diminishes the aperture of the stomatal pore and thereby contributes to the ability of the plant to conserve water during periods of drought. Previous work has demonstrated that cytosolic Ca2+ is involved in the signal transduction pathway that mediates the reduction in guard cell turgor elicited by ABA. Here we report that ABA uses a Ca2+-mobilization pathway that involves cyclic adenosine 5-diphosphoribose (cADPR). Microinjection of cADPR into guard cells caused reductions in turgor that were preceded by increases in the concentration of free Ca2+ in the cytosol. Patch clamp measurements of isolated guard cell vacuoles revealed the presence of a cADPR-elicited Ca2+-selective current that was inhibited at cytosolic Ca2+ 600 nM. Furthermore, microinjection of the cADPR antagonist 8-NH2-cADPR caused a reduction in the rate of turgor loss in response to ABA in 54% of cells tested, and nicotinamide, an antagonist of cADPR production, elicited a dose-dependent block of ABA-induced stomatal closure. Our data provide definitive evidence for a physiological role for cADPR and illustrate one mechanism of stimulus-specific Ca2+ mobilization in higher plants. Taken together with other recent data [Wu, Y., Kuzma, J., Marechal, E., Graeff, R., Lee, H. C., Foster, R. & Chua, N.-H. (1997) Science 278, 21262130], these results establish cADPR as a key player in ABA signal transduction pathways in plants.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The classic view for hypothalamic regulation of anterior pituitary (AP) hormone secretion holds that release of each AP hormone is controlled specifically by a corresponding hypothalamic-releasing hormone (HRH). In this scenario, binding of a given HRH (thyrotropin-, growth hormone-, corticotropin-, and luteinizing hormone-releasing hormones) to specific receptors in its target cell increases the concentration of cytosolic Ca2+ ([Ca2+]i), thereby selectively stimulating the release of the appropriate hormone. However, paradoxical responses of AP cells to the four well-established HRHs have been observed repeatedly with both in vivo and in vitro systems, raising the possibility of functional overlap between the different AP cell types. To explore this possibility, we evaluated the effects of HRHs on [Ca2+]i in single AP cells identified immunocytochemically by the hormone they stored. We found that each of the five major AP cell types contained discrete subpopulations that were able to respond to several HRHs. The relative abundance of these multi-responsive cells was 59% for lactotropes, 33% for thyrotropes, and in the range of 4755% for gonadotropes, corticotropes, and somatotropes. Analysis of prolactin release from single living cells revealed that each of the four HRHs tested were able to induce hormone release from a discrete lactotrope subpopulation, the size of which corresponded closely to that in which [Ca2+]i changes were induced by the same secretagogues. When viewed as a whole, our diverse functional measurements of multi-responsiveness suggest that hypothalamic control of pituitary function is more complicated than previously envisioned. Moreover, they provide a cellular basis for the so-called paradoxical behavior of pituitary cells to hypothalamic hypophysiotropic agents.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Central core disease (CCD) is a human congenital myopathy characterized by fetal hypotonia and proximal muscle weakness that is linked to mutations in the gene encoding the type-1 ryanodine receptor (RyR1). CCD is thought to arise from Ca2+-induced damage stemming from mutant RyR1 proteins forming leaky sarcoplasmic reticulum (SR) Ca2+ release channels. A novel mutation in the C-terminal region of RyR1 (I4898T) accounts for an unusually severe and highly penetrant form of CCD in humans [Lynch, P. J., Tong, J., Lehane, M., Mallet, A., Giblin, L., Heffron, J. J., Vaughan, P., Zafra, G., MacLennan, D. H. & McCarthy, T. V. (1999) Proc. Natl. Acad. Sci. USA 96, 41644169]. We expressed in skeletal myotubes derived from RyR1-knockout (dyspedic) mice the analogous mutation engineered into a rabbit RyR1 cDNA (I4897T). Here we show that homozygous expression of I4897T in dyspedic myotubes results in a complete uncoupling of sarcolemmal excitation from voltage-gated SR Ca2+ release without significantly altering resting cytosolic Ca2+ levels, SR Ca2+ content, or RyR1-mediated enhancement of dihydropyridine receptor (DHPR) channel activity. Coexpression of both I4897T and wild-type RyR1 resulted in a 60% reduction in voltage-gated SR Ca2+ release, again without altering resting cytosolic Ca2+ levels, SR Ca2+ content, or DHPR channel activity. These findings indicate that muscle weakness suffered by individuals possessing the I4898T mutation involves a functional uncoupling of sarcolemmal excitation from SR Ca2+ release, rather than the expression of overactive or leaky SR Ca2+ release channels.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The putative Ca2+-channel blocker LaCl3 prevented the gravitropic bending of cut snapdragon (Antirrhinum majus L.) spikes (S. Philosoph-Hadas, S. Meir, I. Rosenberger, A.H. Halevy [1996] Plant Physiol 110: 301310) and inhibited stem curvature to a greater extent than vertical and horizontal stem elongation at the bending zone. This might indicate that LaCl3, which modulates cytosolic Ca2+, does not influence general stem-growth processes but may specifically affect other gravity-associated processes occurring at the stem-bending zone. Two such specific gravity-dependent events were found to occur in the bending zone of snapdragon spikes: sedimentation of starch-containing chloroplasts at the bottom of stem cortex cells, as seen in cross-sections, and establishment of an ethylene gradient across the stem. Our results show that the lateral sedimentation of chloroplasts associated with gravity sensing was prevented in cross-sections taken from the bending zone of LaCl3-treated and subsequently gravistimulated spikes and that LaCl3 completely prevented the gravity-induced, asymmetric ethylene production established across the stem-bending zone. These data indicate that LaCl3 inhibits stem curvature of snapdragon spikes by preventing several gravity-dependent processes. Therefore, we propose that the gravitropic response of shoots could be mediated through a Ca2+-dependent pathway involving modulation of cytosolic Ca2+ at various stages.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The divalent cation Sr2+ induced repetitive transient spikes of the cytosolic Ca2+ activity [Ca2+]cy and parallel repetitive transient hyperpolarizations of the plasma membrane in the unicellular green alga Eremosphaera viridis. [Ca2+]cy measurements, membrane potential measurements, and cation analysis of the cells were used to elucidate the mechanism of Sr2+-induced [Ca2+]cy oscillations. Sr2+ was effectively and rapidly compartmentalized within the cell, probably into the vacuole. The [Ca2+]cy oscillations cause membrane potential oscillations, and not the reverse. The endoplasmic reticulum (ER) Ca2+-ATPase blockers 2,5-di-tert-butylhydroquinone and cyclopiazonic acid inhibited Sr2+-induced repetitive [Ca2+]cy spikes, whereas the compartmentalization of Sr2+ was not influenced. A repetitive Ca2+ release and Ca2+ re-uptake by the ER probably generated repetitive [Ca2+]cy spikes in E. viridis in the presence of Sr2+. The inhibitory effect of ruthenium red and ryanodine indicated that the Sr2+-induced Ca2+ release from the ER was mediated by a ryanodine/cyclic ADP-ribose type of Ca2+ channel. The blockage of Sr2+-induced repetitive [Ca2+]cy spikes by La3+ or Gd3+ indicated the necessity of a certain influx of divalent cations for sustained [Ca2+]cy oscillations. Based on these data we present a mathematical model that describes the baseline spiking [Ca2+]cy oscillations in E. viridis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Peptide substrates of well-defined protein kinases were microinjected into aleurone protoplasts of barley (Hordeum vulgare L. cv Himalaya) to inhibit, and therefore identify, protein kinase-regulated events in the transduction of the gibberellin (GA) and abscisic acid signals. Syntide-2, a substrate designed for Ca2+- and calmodulin (CaM)-dependent kinases, selectively inhibited the GA response, leaving constitutive and abscisic acid-regulated events unaffected. Microinjection of syntide did not affect the GA-induced increase in cytosolic [Ca2+], suggesting that it inhibited GA action downstream of the Ca2+ signal. When photoaffinity-labeled syntide-2 was electroporated into protoplasts and cross-linked to interacting proteins in situ, it selectively labeled proteins of approximately 30 and 55 kD. A 54-kD, soluble syntide-2 phosphorylating protein kinase was detected in aleurone cells. This kinase was activated by Ca2+ and was CaM independent, but was inhibited by the CaM antagonist N-(6-aminohexyl)-5-chloro-1-naphthalene-sulfonamide (250 m), suggesting that it was a CaM-domain protein kinase-like activity. These results suggest that syntide-2 inhibits the GA response of the aleurone via an interaction with this kinase, implicating the 54-kD kinase as a Ca2+-dependent regulator of the GA response in these cells.