954 resultados para CYTOPLASMIC POLYADENYLATION
Resumo:
During activation, T lymphocytes become motile cells, switching from a spherical to a polarized shape. Chemokines and other chemotactic cytokines induce lymphocyte polarization with the formation of a uropod in the rear pole, where the adhesion receptors intercellular adhesion molecule-1 (ICAM-1), ICAM-3, and CD44 redistribute. We have investigated membrane-cytoskeleton interactions that play a key role in the redistribution of adhesion receptors to the uropod. Immunofluorescence analysis showed that the ERM proteins radixin and moesin localized to the uropod of human T lymphoblasts treated with the chemokine RANTES (regulated on activation, normal T cell expressed, and secreted), a polarization-inducing agent; radixin colocalized with arrays of myosin II at the neck of the uropods, whereas moesin decorated the most distal part of the uropod and colocalized with ICAM-1, ICAM-3, and CD44 molecules. Two other cytoskeletal proteins, ß-actin and ¿-tubulin, clustered at the cell leading edge and uropod, respectively, of polarized lymphocytes. Biochemical analysis showed that moesin coimmunoprecipitates with ICAM-3 in T lymphoblasts stimulated with either RANTES or the polarization- inducing anti-ICAM-3 HP2/19 mAb, as well as in the constitutively polarized T cell line HSB-2. In addition, moesin is associated with CD44, but not with ICAM-1, in polarized T lymphocytes. A correlation between the degree of moesin-ICAM-3 interaction and cell polarization was found as determined by immunofluorescence and immunoprecipitation analysis done in parallel. The moesin-ICAM-3 interaction was specifically mediated by the cytoplasmic domain of ICAM-3 as revealed by precipitation of moesin with a GST fusion protein containing the ICAM-3 cytoplasmic tail from metabolically labeled Jurkat T cell lysates. The interaction of moesin with ICAM-3 was greatly diminished when RANTES-stimulated T lymphoblasts were pretreated with the myosin-disrupting drug butanedione monoxime, which prevents lymphocyte polarization. Altogether, these data indicate that moesin interacts with ICAM-3 and CD44 adhesion molecules in uropods of polarized T cells; these data also suggest that these interactions participate in the formation of links between membrane receptors and the cytoskeleton, thereby regulating morphological changes during cell locomotion.
Resumo:
BACKGROUND: Few studies have evaluated the influence of colectomy on antineutrophil cytoplasmic antibody (ANCA) positivity in ulcerative colitis (UC). In small series of patients it has been suggested that ANCA positivity in UC might be predictive for development of pouchitis after colectomy. AIMS: To assess the prevalence of ANCA in UC patients treated by colectomy and a Brooke's ileostomy (UC-BI) or ileal pouch anal anastomosis (UC-IPAA), and the relation between the presence of ANCA, the type of surgery, and the presence of pouchitis. SUBJECTS: 63 UC patients treated by colectomy (32 with UC-BI and 31 with UC-IPAA), 54 UC, and 24 controls. METHODS: Samples were obtained at least two years after colectomy. ANCA were detected by indirect immunofluorescent assay. RESULTS: There were no differences between patients with (36.3%) or without pouchitis (35.0%) and between patients with UC (55%), UC-BI (40.6%), and UC-IPAA (35.4%). However, ANCA prevalence significantly decreases in the whole group of operated patients (38.0%) compared with non-operated UC (p = 0.044). CONCLUSIONS: The prevalence of ANCA in operated patients was significantly lower than in non-operated UC, suggesting that it might be related either to the presence of inflamed or diseased tissue. ANCA persistence is not related to the surgical procedure and it should not be used as a marker for predicting the development of pouchitis.
Resumo:
The effects of the thyroid hormones on target cells are mediated through nuclear T3 receptors. In the peripheral nervous system, nuclear T3 receptors were previously detected with the monoclonal antibody 2B3 mAb in all the primary sensory neurons throughout neuronal life and in peripheral glia at the perinatal period only (Eur. J. Neurosci. 5, 319, 1993). To determine whether these nuclear T3 receptors correspond to functional ones able to bind T3, cryostat sections and in vitro cell cultures of dorsal root ganglion (DRG) or sciatic nerve were incubated with 0.1 nM [125I]-labeled T3, either alone to visualize the total T3-binding sites or added with a 10(3) fold excess of unlabeled T3 to estimate the part due to the non-specific T3-binding. After glutaraldehyde fixation, radioautography showed that the specific T3-binding sites were largely prevalent. The T3-binding capacity of peripheral glia in DRG and sciatic nerve was restricted to the perinatal period in vivo and to Schwann cells cultured in vitro. In all the primary sensory neurons, specific T3-binding sites were disclosed in foetal as well as adult rats. The detection of the T3-binding sites in the nucleus indicated that the nuclear T3 receptors are functional. Moreover the concomitant presence of both T3-binding sites and T3 receptors alpha isoforms in the perikaryon of DRG neurons infers that: 1) [125I]-labeled T3 can be retained on the T3-binding 'E' domain of nascent alpha 1 isoform molecules newly-synthesized on the perikaryal ribosomes; 2) the alpha isoforms translocated to the nucleus are modified by posttranslational changes and finally recognized by 2B3 mAb as nuclear T3 receptor. In conclusion, the radioautographic visualization of the T3-binding sites in peripheral neurons and glia confirms that the nuclear T3 receptors are functional and contributes to clarify the discordant intracellular localization provided by the immunocytochemical detection of nuclear T3 receptors and T3 receptor alpha isoforms.
Resumo:
BACKGROUND: Cleavage of messenger RNA (mRNA) precursors is an essential step in mRNA maturation. The signal recognized by the cleavage enzyme complex has been characterized as an A rich region upstream of the cleavage site containing a motif with consensus AAUAAA, followed by a U or UG rich region downstream of the cleavage site. RESULTS: We studied these signals using exhaustive databases of cleavage sites obtained from aligning raw expressed sequence tags (EST) sequences to genomic sequences in Homo sapiens and Drosophila melanogaster. These data show that the polyadenylation signal is highly conserved in human and fly. In addition, de novo motif searches generated a refined description of the U-rich downstream sequence (DSE) element, which shows more divergence between the two species. These refined motifs are applied, within a Hidden Markov Model (HMM) framework, to predict mRNA cleavage sites. CONCLUSION: We demonstrate that the DSE is a specific motif in both human and Drosophila. These findings shed light on the sequence correlates of a highly conserved biological process, and improve in silico prediction of 3' mRNA cleavage and polyadenylation sites.
Resumo:
SUMMARY BACKGROUND: P-selectin glycoprotein ligand 1 (PSGL-1) is a major selectin ligand, mediating leukocyte rolling along inflamed vascular wall. It is a mucin-like homodimer composed of a N-terminal domain which binds selectins, followed by 14-16 decameric repeats (DR), a transmembrane domain and a cytoplasmic tail, which may be involved in regulating leukocyte rolling and in generating intracellular signals, through its binding to moesin and Syk. P- and L-selectin binding is dependent on core-2 O-glycosylation and tyrosine sulfation of PSGL-1 N-terminus. However, a minor part of E-selectin-mediated rolling is dependent on N-terminal O-glycans; additional binding sites may thus be involved. In this project, we studied whether (1) PSGL-1 DR and (2) PSGL-1 cytoplasmic residues which bind moesin, were also involved in the regulation of selectin-dependent rolling. METHODS: Several mutated cDNAs were obtained: (1) PSGL-1 DR were either deleted, or substituted by platelet GPlba macroglycopeptide, (2) Ser-336, -348, Lys-337 and Arg-338 were mutated to alanine; moreover, truncation mutants retaining only 6 or 2 cytoplasmic residues were also generated. Transfected CHO expressing mutant PSGL-1 were tested for their ability to bind soluble selectin chimeras and to support selectin-dependent rolling under flow conditions. RESULTS: (1) Deletion of the DR had a dramatic effect on P- and L-selectin-dependent cell recruitment and rolling stability, which could only partially be compensated for, by GPlba substitution. In addition, we observed that DR create a binding site for E-selectin and thus support PSGL-1-dependent rolling. (2) Flow assays revealed that the moesin-binding site, in particular Ser-336, plays a crucial role in regulating the recruitment, velocity and rolling stability of PSGL-1-expressing cells on P- and L-selectin. CONCLUSIONS: Data presented here highlight the structure -function relationship of PSGL-1 DR. Moreover, they reveal a crucial role for the moesin-binding residues in regulating P-and L-selectin-dependent rolling. RÉSUMÉ CONTEXTE: PSGL-1 (P-selectin glycoprotein ligand 1) est un ligand majeur des sélectines permettant le roulement des leucocytes le long de la paroi vasculaire enflammée. C'est un homodimère de type mucine, composé d'un domaine N-terminal liant les sélectines, suivi de 14-16 répétitions décamèriques (RD), d'un domaine transmembranaire et d'une queue cytoplasmique qui pourrait être impliquée dans la régulation du roulement leucocytaire et la génération de signaux intracellulaires, via sa liaison à la moésine et à Syk. La liaison à la Pet à la L-sélectine dépend de la présentation par le N-terminus de PSGL-1 de O-glycans sur des structures core-2 et de tyrosines sulfatées. Cependant, une fraction mineure du roulement médié par la E-sélectine dépend des O-glycans N-terminaux; des sites de liaisons supplémentaires pourraient donc être impliqués. Dans ce projet, nous avons étudié si (1) les RD de PSGL-1 ainsi que (2) les résidus cytoplasmiques liant la moésine, étaient impliqués dans la régulation du roulement dépendant des sélectines. MÉTHODES: Plusieurs ADN codant des formes mutées de PSGL-1 ont été obtenus: (1) Les RD de PSGL-1 ont été soit ôtées, soit remplacées par le macroglycopeptide de la GPlba plaquettaire, (2) les Ser-336, -348, la Lys-337 et l'Arg-338 ont été mutées en alanine; par ailleurs, des mutants tronqués ne retenant plus que 6 ou 2 résidus cytoplasmiques ont également été générés. Des CHO transfectées exprimant PSGL-1 muté ont été testées pour leur capacité à lier des sélectines chimériques solubles et à soutenir un roulement dépendant des sélectines dans des conditions de flux. RÉSULTATS: (1) La perte des RD a eu un effet dramatique sur le recrutement cellulaire et la stabilité de roulement dépendant des P- et L-sélectine, qui n'a pu être que partiellement compensé par la substitution par la GPlba. De plus, nous avons observé que les RD forment un site de liaison pour la E-sélectine et soutiennent ainsi le roulement dépendant de PSGL-1. (2) Les tests de flux ont révélé que le site de liaison à la moésine, notamment la Ser-336, joue un rôle crucial dans la régulation du recrutement, de la vitesse et de la stabilité du roulement des cellules exprimant PSGL-1 sur les P- et L-sélectine. CONCLUSIONS; Les données présentées ici ont permis d'éclaircir la relation structure -fonction des RD de PSGL-1. Par ailleurs, elles révèlent un rôle crucial pour les résidus liant la moésine dans le roulement dépendant des P- et L-sélectine. RÉSUMÉ DESTINÉ À UN LARGE PUBLIC Pour accomplir ses fonctions, le sang circule sur un réseau de 96'000 kilomètres; ainsi, il approvisionne les cellules de l'organisme en énergie, il transporte diverses substances, il assure la défense contre les pathogènes et il participe à la régulation de la température corporelle. Le sang contient plusieurs types de cellules: la grande majorité sont les globules rouges, auxquels il faut ajouter les plaquettes (dont le rôle est de colmater les lésions vasculaires) et les globules blancs (leucocytes) qui, bien que présents en très faible quantité (moins de 0.01 %), jouent un rôle crucial en cas d'infection ou d'inflammation. Une attaque par un pathogène provoque plusieurs changements (rougeur, chaleur, gonflement, douleur), qui sont des manifestations de l'inflammation. Pour atteindre l'agent infectieux, des globules blancs spécialisés (les granulocytes) doivent quitter la circulation sanguine. Afin de faciliter leur capture, les vaisseaux sanguins vont exprimer des protéines telles que les sélectines, qui sont reconnues par une protéine leucocytaire appelée PSGL-1 (P-selectin glycoprotein ligand 7). L'interaction des sélectines avec PSGL-1 soutient le roulement du globule blanc le long de la paroi vasculaire, à une vitesse très inférieure à celle du flux sanguin. Ce roulement conduit à l'activation du globule blanc par des molécules de l'inflammation, permettant son adhésion ferme, puis son arrêt. Finalement, le granulocyte va migrer à travers la paroi du vaisseau pour atteindre et éliminer les causes de l'inflammation. L'adhésion est un processus intéressant à caractériser, car outre l'inflammation, il est également impliqué dans l'artériosclérose, l'infarctus, la métastatisation et la thrombose. Dans ce travail, nous nous sommes intéressés à définir les rôles des différents domaines de PSGL-1 dans la régulation de son interaction avec les sélectines. En effet, en plus de son extrémité extracellulaire de haute affinité pour les sélectines, PSGL-1 est composé de plusieurs séquences répétées hautement glycosylées et d'une courte région intracellulaire, dont les fonctions n'avaient pas été étudiées auparavant. En créant des formes mutées de PSGL-1, nous avons pu montrer qu'un roulement efficace des leucocytes nécessite la présence des régions répétitives et du domaine intracellulaire au complet.
Resumo:
Summary Multicellular organisms have evolved the immune system to protect from pathogen such as viruses, bacteria, fungi or parasites. Detection of invading pathogens by the host innate immune system is crucial for mounting protective responses and depends on the recognition of microbial components by specific receptors. The results presented in this manuscript focus on the signaling pathways involved in the detection of viral infection by the sensing of viral nucleic acids. First, we describe a new regulatory mechanism controlling RNA-sensing antiviral pathways. Our results indicate that TRIF and Cardif, the crucial adaptor proteins for endosomal and cytoplasmic RNA detection signaling pathway, are processed and inactivated by caspases. The second aspect investigated here involves a signaling pathway triggered upon cytosolic DNA sensing. The interferon inducible protein DAI was recently described as a DNA sensor able to induce the activation of IRFs and NF-κΒ transcription factors leading to type I interferon production. Here we identify two RIP homotypic interaction motifs (RHIMs) in DAI and demonstrate that they mediate the recruitment of RIP1 and RIP3 and the subsequent NF-κΒ activation. Moreover, we observed that the mouse cytomegalovirus RHIM- containing protein M45 has the potential to block this signaling cascade by interfering with the formation of the DAI-RIP1/3 signaling complex. Finally, we report the generation and the initial characterization of NLRX1-deficient mice. NLRX1 is a member of the NOD-like receptor family localized to the mitochondria. The function of NLRX1 is still controversial: one study proposed that NLRX1 acts as an inhibitor of the RIG-like receptor (RLR) antiviral pathway by binding the adaptor protein Cardif, whereas another report implicated NLRX1 in the generation of reactive oxygen species (ROS) and the amplification of NF-κΒ and JNK triggered by TNF-α, poly(I:C) or Shigella infection. Collectively, our results indicate that NLRX1-deficiency does not affect RLR signaling nor TNF-α induced responses. Proteomics analysis identified UQCRC2, a subunit of the complex III of the mitochondrial respiratory chain, as a NLRX1 binding partner. This observation might reveal a possible functional link between NLRX1 and mitochondrial respiration and/or ROS generation. Résumé Au cours de l'évolution, les organismes multicellulaires ont développé le système immunitaire afin de se protéger contre les pathogènes. Une étape cruciale pour le déclenchement des réponses protectrices est la reconnaissance par les cellules du système immunitaire de molécules propres aux microbes grâce à des récepteurs spécifiques. Les résultats présentés dans cette thèse décrivent des nouveaux aspects concernant les voies de signalisation impliquées dans la détection des virus. Le premier projet décrit un mécanisme de régulation des voies activées par la détection d'ARN virale. Nos résultats montrent que TRIF et Cardif, des protéines adaptatrices des voies déclenchées par la reconnaissance de ces acides nucléiques au niveau des endosomes et du cytoplasme, sont clivés et inactivés par les caspases. Le projet suivant de notre recherche concerne une voie de signalisation activée par la détection d'ADN au niveau du cytoplasme. La protéine DAI a été récemment décrite comme un senseur pour cet ADN capable d'activer les facteurs de transcription IRF et NF-κΒ et d'induire ainsi la production des interférons de type I. Ici on démontre que DAI interagit avec RIP1 et RIP3 par le biais de domaines appelés RHIM et que ce complexe est responsable de l'activation de NF-κΒ. On a aussi identifié une protéine du cytomégalovirus de la souris, M45, qui contient ce même domaine et on a pu démontrer qu'elle a la capacité d'interférer avec la formation du complexe entre DAI et RIP1/RIP3 bloquant ainsi l'activation de NF-κΒ. Enfin on décrit ici la génération de souris déficientes pour le gène qui code pour la protéine NLRX1. Cette protéine fait partie de la famille des récepteurs NOD et est localisée dans la mitochondrie. Une étude a suggéré que NLRX1 agit comme un inhibiteur des voies antivirales activées par les récepteurs du type RIG-I (RLR) en interagissant avec la protéine adaptatrice Cardif. Une autre étude propose par contre que NLRX1 participe à la production des dérivés réactifs de l'oxygène et contribue ainsi à augmenter l'activation de NF- κΒ et JNK induite par le TNF-α ou le poly(I:C). Nos résultats montrent que l'absence de NLRX1 ne modifie ni la voie de signalisation RLR ni les réponses induites par le TNF-α. Des analyses ultérieures ont permis d'identifier comme partenaire d'interaction de NLRX1 la protéine UQCRC2, une des sous-unités qui composent le complexe III de la chaîne respiratoire mitochondriale. Cette observation pourrait indiquer un lien fonctionnel entre NLRX1 et la respiration mitochondriale ou la production des dérivés réactifs de l'oxygène au niveau de cette organelle.
Resumo:
We purified from activated T lymphocytes a novel, highly conserved, 116-kDa, intracellular protein that occurred at high levels in the large, dividing cells of the thymus, was up-regulated when resting T or B lymphocytes or hemopoietic progenitors were activated, and was down-regulated when a monocytic leukemia, M1, was induced to differentiate. Expression of the protein was highest in the thymus and spleen and lowest in tissues with a low proportion of dividing cells such as kidney or muscle, although expression was high in the brain. The protein was localized to the cytosol and was phosphorylated, which is consistent with a previous report that the Xenopus laevis ortholog was phosphorylated by a mitotically activated kinase (1 ). The cDNA was previously mischaracterized as encoding p137, a 137-kDa GPI-linked membrane protein (2 ). We propose that the authentic protein encoded by this cDNA be called cytoplasmic activation/proliferation-associated protein-1 (caprin-1), and show that it is the prototype of a novel family of proteins characterized by two novel protein domains, termed homology regions-1 and -2 (HR-1, HR-2). Although we have found evidence for caprins only in urochordates and vertebrates, two insect proteins exhibit well-conserved HR-1 domains. The HR-1 and HR-2 domains have no known function, although the HR-1 of caprin-1 appeared necessary for formation of multimeric complexes of caprin-1. Overexpression of a fusion protein of enhanced green fluorescent protein and caprin-1 induced a specific, dose-dependent suppression of the proliferation of NIH-3T3 cells, consistent with the notion that caprin-1 plays a role in cellular activation or proliferation.
Resumo:
Beside the several growth factors which play a crucial role in the development and regeneration of the nervous system, thyroid hormones also contribute to the normal development of the central and peripheral nervous system. In our previous work, we demonstrated that triiodothyronine (T3) in physiological concentration enhances neurite outgrowth of primary sensory neurons in cultures. Neurite outgrowth requires microtubules and microtubule associated proteins (MAPs). Therefore the effects of exogenous T3 or/and nerve growth factors (NGF) were tested on the expression of cytoskeletal proteins in primary sensory neurons. Dorsal root ganglia (DRG) from 19 day old rat embryos were cultured under four conditions: (1) control cultures in which explants were grown in the absence of T3 and NGF, (2) cultures grown in the presence of NGF alone, (3) in the presence of T3 alone or (4) in the presence of NGF and T3 together. Analysis of proteins by SDS-polyacrylamide gel electrophoresis revealed the presence of several proteins in the molecular weight region around 240 kDa. NGF and T3 together induced the expression of one protein, in particular, with a molecular weight above 240 kDa, which was identified by an antibody against MAP1c, a protein also known as cytoplasmic dynein. The immunocytochemical detection confirmed that this protein was expressed only in DRG explants grown in the presence of NGF and T3 together. Neither control explants nor explants treated with either NGF or T3 alone expressed dynein. In conclusion, a combination of nerve growth factor and thyroid hormone is necessary to regulate the expression of cytoplasmic dynein, a protein that is involved in retrograde axonal transport.
Resumo:
Metacaspases are cysteine peptidases that could play a role similar to caspases in the cell death programme of plants, fungi and protozoa. The human protozoan parasite Leishmania major expresses a single metacaspase (LmjMCA) harbouring a central domain with the catalytic dyad histidine and cysteine as found in caspases. In this study, we investigated the processing sites important for the maturation of LmjMCA catalytic domain, the cellular localization of LmjMCA polypeptides, and the functional role of the catalytic domain in the cell death pathway of Leishmania parasites. Although LmjMCA polypeptide precursor form harbours a functional mitochondrial localization signal (MLS), we determined that LmjMCA polypeptides are mainly localized in the cytoplasm. In stress conditions, LmjMCA precursor forms were extensively processed into soluble forms containing the catalytic domain. This domain was sufficient to enhance sensitivity of parasites to hydrogen peroxide by impairing the mitochondrion. These data provide experimental evidences of the importance of LmjMCA processing into an active catalytic domain and of its role in disrupting mitochondria, which could be relevant in the design of new drugs to fight leishmaniasis and likely other protozoan parasitic diseases.
Resumo:
Activation of the Janus Kinase 2/Signal Transducer and Activator of Transcription 3 (JAK2/STAT3) pathway is known to play a key role in cardiogenesis and to afford cardioprotection against ischemia-reperfusion in adult. However, involvement of JAK2/STAT3 pathway and its interaction with other signaling pathways in developing heart transiently submitted to anoxia remains to be explored. Hearts isolated from 4-day-old chick embryos were submitted to anoxia (30 min) and reoxygenation (80 min) with or without the antioxidant MPG, the JAK2/STAT3 inhibitor AG490 or the PhosphoInositide-3-Kinase (PI3K)/Akt inhibitor LY-294002. Time course of phosphorylation of STAT3α(tyrosine705) and Reperfusion Injury Salvage Kinase (RISK) proteins [PI3K, Akt, Glycogen Synthase Kinase 3beta (GSK3beta), Extracellular signal-Regulated Kinase 2 (ERK2)] was determined in homogenate and in enriched nuclear and cytoplasmic fractions of the ventricle. STAT3 DNA-binding was determined. The chrono-, dromo- and inotropic disturbances were also investigated by electrocardiogram and mechanical recordings. Phosphorylation of STAT3α(tyr705) was increased by reoxygenation, reduced (~50%) by MPG or AG490 but not affected by LY-294002. STAT3 and GSK3beta were detected both in nuclear and cytoplasmic fractions while PI3K, Akt and ERK2 were restricted to cytoplasm. Reoxygenation led to nuclear accumulation of STAT3 but unexpectedly without DNA-binding. AG490 decreased the reoxygenation-induced phosphorylation of Akt and ERK2 and phosphorylation/inhibition of GSK3beta in the nucleus, exclusively. Inhibition of JAK2/STAT3 delayed recovery of atrial rate, worsened variability of cardiac cycle length and prolonged arrhythmias as compared to control hearts. Thus, besides its nuclear translocation without transcriptional activity, oxyradicals-activated STAT3α can rapidly interact with RISK proteins present in nucleus and cytoplasm, without dual interaction, and reduce the anoxia-reoxygenation-induced arrhythmias in the embryonic heart.
Resumo:
Dominant missense mutations in FLNB, encoding the actin-cross linking protein filamin B (FLNB), cause a broad range of skeletal dysplasias with varying severity by an unknown mechanism. Here these FLNB mutations are shown to cluster in exons encoding the actin-binding domain (ABD) and filamin repeats surrounding the flexible hinge 1 region of the FLNB rod domain. Despite being positioned in domains that bind actin, it is unknown if these mutations perturb cytoskeletal structure. Expression of several full-length FLNB constructs containing ABD mutations resulted in the appearance of actin-containing cytoplasmic focal accumulations of the substituted protein to a degree that was correlated with the severity of the associated phenotypes. In contrast, study of mutations leading to substitutions in the FLNB rod domain that result in the same phenotypes as ABD mutations demonstrated that with only one exception disease-associated substitutions, surrounding hinge 1 demonstrated no tendency to form actin-filamin foci. The exception, a substitution in filamin repeat 6, lies within a region previously implicated in filamin-actin binding. These data are consistent with mutations in the ABD conferring enhanced actin-binding activity but suggest that substitutions affecting repeats near the flexible hinge region of FLNB precipitate the same phenotypes through a different mechanism.
Resumo:
Intrinsic resistance to the epidermal growth factor receptor (EGFR; HER1) tyrosine kinase inhibitor (TKI) gefitinib, and more generally to EGFR TKIs, is a common phenomenon in breast cancer. The availability of molecular criteria for predicting sensitivity to EGFR-TKIs is, therefore, the most relevant issue for their correct use and for planning future research. Though it appears that in non-small-cell lung cancer (NSCLC) response to gefitinib is directly related to the occurrence of specific mutations in the EGFR TK domain, breast cancer patients cannot be selected for treatment with gefitinib on the same basis as such EGFR mutations have beenreported neither in primary breast carcinomas nor in several breast cancer cell lines. Alternatively, there is a generalagreement on the hypothesis that the occurrence of molecular alterations that activate transduction pathways downstreamof EGFR (i.e., MEK1/MEK2 - ERK1/2 MAPK and PI-3'K - AKT growth/survival signaling cascades) significantly affect the response to EGFR TKIs in breast carcinomas. However,there are no studies so far addressing a role of EGF-related ligands as intrinsic breast cancer cell modulators of EGFR TKIefficacy. We recently monitored gene expression profiles andsub-cellular localization of HER-1/-2/-3/-4 related ligands (i.e., EGF, amphiregulin, transforming growth factor-α, ß-cellulin,epiregulin and neuregulins) prior to and after gefitinib treatment in a panel of human breast cancer cell lines. First, gefitinibinduced changes in the endogenous levels of EGF-related ligands correlated with the natural degree of breast cancer cellsensitivity to gefitinib. While breast cancer cells intrinsically resistant to gefitinib (IC50 ≥15 μM) markedly up-regulated(up to 600 times) the expression of genes codifying for HERspecific ligands, a significant down-regulation (up to 106 times)of HER ligand gene transcription was found in breast cancer cells intrinsically sensitive to gefitinib (IC50 ≤1 μM). Second,loss of HER1 function differentially regulated the nuclear trafficking of HER-related ligands. While gefitinib treatment induced an active import and nuclear accumulation of the HER ligand NRG in intrinsically gefitinib-resistant breastcancer cells, an active export and nuclear loss of NRG was observed in intrinsically gefitinib-sensitive breast cancer cells.In summary, through in vitro and pharmacodynamic studies we have learned that, besides mutations in the HER1 gene,oncogenic changes downstream of HER1 are the key players regulating gefitinib efficacy in breast cancer cells. It now appears that pharmacological inhibition of HER1 functionalso leads to striking changes in both the gene expression and the nucleo-cytoplasmic trafficking of HER-specific ligands,and that this response correlates with the intrinsic degree of breast cancer sensitivity to the EGFR TKI gefitinib. Therelevance of this previously unrecognized intracrine feedback to gefitinib warrants further studies as cancer cells could bypassthe antiproliferative effects of HER1-targeted therapeutics without a need for the overexpression and/or activation of other HER family members and/or the activation of HER-driven downstream signaling cascades
Resumo:
miR-21 is the most commonly over-expressed microRNA (miRNA) in cancer and a proven oncogene. Hsa-miR-21 is located on chromosome 17q23.2, immediately downstream of the vacuole membrane protein-1 (VMP1) gene, also known as TMEM49. VMP1 transcripts initiate ∼130 kb upstream of miR-21, are spliced, and polyadenylated only a few hundred base pairs upstream of the miR-21 hairpin. On the other hand, primary miR-21 transcripts (pri-miR-21) originate within the last introns of VMP1, but bypass VMP1 polyadenylation signals to include the miR-21 hairpin. Here, we report that VMP1 transcripts can also bypass these polyadenylation signals to include miR-21, thus providing a novel and independently regulated source of miR-21, termed VMP1–miR-21. Northern blotting, gene-specific RT-PCR, RNA pull-down and DNA branching assays support that VMP1–miR-21 is expressed at significant levels in a number of cancer cell lines and that it is processed by the Microprocessor complex to produce mature miR-21. VMP1 and pri-miR-21 are induced by common stimuli, such as phorbol-12-myristate-13-acetate (PMA) and androgens, but show differential responses to some stimuli such as epigenetic modifying agents. Collectively, these results indicate that miR-21 is a unique miRNA capable of being regulated by alternative polyadenylation and two independent gene promoters.
Resumo:
Mutations in PARK7/DJ-1 gene are associated to autosomal recessive early onset forms of Parkinson"s disease (PD). Although large gene deletions have been linked to a loss-of-function phenotype, the pathogenic mechanism of missense mutations is less clear. The L166P mutation causes misfolding of DJ-1 protein and its degradation. L166P protein may also accumulate into insoluble cytoplasmic aggregates with a mechanism facilitated by the E3 ligase TNF receptor associated factor 6 (TRAF6). Upon proteasome impairment L166P activates the JNK/p38 MAPK apoptotic pathway by its interaction with TRAF and TNF Receptor Associated Protein (TTRAP). When proteasome activity is blocked in the presence of wild-type DJ-1, TTRAP forms aggregates that are localized to the cytoplasm or associated to nucleolar cavities, where it is required for a correct rRNA biogenesis. In this study we show that in post-mortem brains of sporadic PD patients TTRAP is associated to the nucleolus and to Lewy Bodies, cytoplasmic aggregates considered the hallmark of the disease. In SH-SY5Y neuroblastoma cells, misfolded mutant DJ-1 L166P alters rRNA biogenesis inhibiting TTRAP localization to the nucleolus and enhancing its recruitment into cytoplasmic aggregates with a mechanism that depends in part on TRAF6 activity. This work suggests that TTRAP plays a role in the molecular mechanisms of both sporadic and familial PD. Furthermore, it unveils the existence of an interplay between cytoplasmic and nucleolar aggregates that impacts rRNA biogenesis and involves TRAF6
Resumo:
Invasive malignant melanoma (MM) is an aggressive tumor with no curative therapy available in advanced stages. Nuclear corepressor (NCoR) is an essential regulator of gene transcription, and its function has been found deregulated in different types of cancer. In colorectal cancer cells, loss of nuclear NCoR is induced by Inhibitor of kappa B kinase (IKK) through the phosphorylation of specific serine residues. We here investigate whether NCoR function impacts in MM, which might have important diagnostic and prognostic significance. By IHC, we here determined the subcellular distribution of NCoR in a cohort of 63 primary invasive MM samples, and analyzed its possible correlation with specific clinical parameters. We therefore used a microarray-based strategy to determine global gene expression differences in samples with similar tumor stage, which differ in the presence of cytoplasmic or nuclear NCoR. We found that loss of nuclear NCoR results in upregulation of a specific cancer-related genetic signature, and is significantly associated with MM progression. Inhibition of IKK activity in melanoma cells reverts NCoR nuclear distribution and specific NCoR-regulated gene transcription. Analysis of public database demonstrated that inactivating NCoR mutations are highly prevalent in MM, showing features of driver oncogene.