1000 resultados para CU-O SUPERCONDUCTOR
Resumo:
Melt grown Nd-Ba-Cu-O (NdBCO) has been reported to exhibit higher values of critical current density, Jc and irreversibility field, Hirr, than other (RE)BCO superconductors, such as YBCO. The microstructure of NdBCO typically contains 5-10 μm sized inclusions of the Nd4Ba2Cu2O10 phase (Nd-422) in a superconducting NdBa2Cu3O7-δ phase (Nd-123) matrix. The average size of these inclusions is characteristically larger than that of the Y2BaCuO5 (Y-211) inclusions in YBCO. As a result, there is scope to further refine the Nd-422 size to enhance Jc in NdBCO. Large grain samples of NdBCO superconductor doped with various amounts of depleted UO2 and containing excess Nd-422 have been fabricated by top seeded melt growth under reduced oxygen partial pressure. The effect of the addition of depleted UO2 on the NdBCO microstructure has been studied systematically in samples with and without added CeO2. It is observed that the addition of UO2 refines the NdBCO microstructure via the formation of uranium-containing phase particles in the superconducting matrix. These particles are of approximately spherical geometry with dimensions of around 1 μm. The average size of the nonsuperconducting phase particles in the uranium-doped microstructure is an order of magnitude less than their size in un-doped Nd-123 prepared with excess Nd-422. The critical current density of uranium-doped NdBCO is observed to increase significantly compared to the undoped material.
Resumo:
Superconductors are known for the ability to trap magnetic field. A thermally actuated magnetization (TAM) flux pump is a system that utilizes the thermal material to generate multiple small magnetic pulses resulting in a high magnetization accumulated in the superconductor. Ferrites are a good thermal material candidate for the future TAM flux pumps because the relative permeability of ferrite changes significantly with temperature, particularly around the Curie temperature. Several soft ferrites have been specially synthesized to reduce the cost and improve the efficiency of the TAM flux pump. Various ferrite compositions have been tested under a temperature variation ranging from 77K to 300K. The experimental results of the synthesized soft ferrites-Cu 0.3 Zn 0.7Ti 0.04Fe 1.96O 4, including the Curie temperature, magnetic relative permeability and the volume magnetization (emu/cm3), are presented in this paper. The results are compared with original thermal material, gadolinium, used in the TAM flux pump system.-Cu 0.3 Zn 0.7Ti 0.04 Fe 1.96O 4 holds superior characteristics and is believed to be a suitable material for next generation TAM flux pump. © 2011 IEEE.