82 resultados para CRYOPROTECTANTS
Resumo:
Cryopreservation of domestic animal sperm has been widely used for artificial insemination (AI), and egg yolk is one of the most commonly used cryoprotectants during the freezing-thawing process. The objectives of this study were to compare the effectiven
Resumo:
胚胎干细胞(embryonic stem cells, ES 细胞)起源于着床前胚胎内的细胞群,对 鼠ES 细胞研究已经有20 多年,但直到1998 年才首次报道从人的胚胎中获得ES 细胞,2006 年本实验室从兔体外受精胚胎的内细胞团分离建立了兔胚胎干细胞 系RF。ES 细胞是能在体外长期培养,高度未分化的全能细胞系,可在适合的条 件下分化为胎儿或成体的各种类型的组织细胞。根据这一特性,它们可用于再生 细胞或组织移植。胚胎干细胞的成功冻存是其应用于临床的前提。成功的冻存是 在冷冻、解冻和复苏培养过程中,细胞具有较高的存活率,且仍能保持胚胎干细 胞的自我更新和全能性的特性。目前除了小鼠ES 细胞用常规慢速冷冻方法可以 达到95%以上的未分化集落复苏率外(Yao & Yuan, 2005),其它物种尤其是灵长 类的许多ES 细胞系用常规慢速冷冻方法的复苏率极低,极大地限制了这些细胞 的临床应用。为提高兔胚胎干细胞RF 在慢速冷冻中的保存效果, 本研究比较了 二甲基亚砜(DMSO)和乙二醇(ethylene glycol,EG)对兔胚胎干细胞冷冻保护效 果。对冷冻复苏后的细胞进行台盼蓝染色,并研究其胚胎干细胞的分子特性,结 果表明, DMSO 比EG 具有更好的冷冻保护效果。再在以10% DMSO 为基础的 防冻液中添加膜稳定剂海藻糖或谷氨酰胺,细胞冷冻复苏后结果显示, 谷氨酰胺 对兔胚胎干细胞有明显的冷冻保护作用,使细胞存活率从71%提高到83.7%。当 谷氨酰胺浓度为0、5、10、20、40mmol/L 分别加入防冻液中后,20mmol/L 的 谷氨酰胺具有最佳的冷冻保护效果。以上结果得出兔胚胎干细胞慢速冷冻的防冻 液改进配方为:胚胎干细胞培养液中添加10% DMSO+20 mmol/L 谷氨酰胺.
Resumo:
A simple and convenient protocol for the cryopreservation of the flounder (Paralichthys olivaceus) sperm was established for "on the spot" cryopreservation of large quantities of semen. The use of three cryoprotectants, dimethyl sulphoxide (DMSO), glycerol (Gly) and methanol was tested in the method. The percentage of motile sperm present in semen after it had been frozen and thawed in the presence of DMSO, Gly or methanol was 60.5 +/- 3.6, 79.17 +/- 4.5 and 13.25 +/- 4.7%, respectively. The fertilization rates of this sperm were 67.06 +/- 15.1, 76.20 +/- 10.0 and 44.93 +/- 22.6%, while the hatching rates of eggs fertilized with this sperm were 37.40 +/- 8.3, 48.18 +/- 25.7 and 23.35 +/- 10.8%, respectively. It was found that Gly and DMSO were better cryoprotectants than methanol, with Gly giving the best overall results. Under scanning electron microscopy, it could be seen that while the majority of the frozen-thawed sperm remained morphologically normal, some exhibited lost or dilated mitochondria, swollen mid-pieces, broken tails, or damaged cell membrane, which probably caused the decrease in motility and fertility of the frozen-thawed sperm. (C) 2003 Elsevier Science Inc. All rights reserved.
Resumo:
In this study several parameters critical to the success of cryopreserving Sydney rock oyster (Saccostrea glomerata) larvae were investigated. They were: (1) cryoprotectants (10% dimethyl sulfoxide and 10% propylene glycol). (2) freezing protocols (with or without the seeding step). (3) larval concentrations (1,000, 3,000, 5,000, 10,000, 30,000 individuals mL(-1)). and (4) larval ages (6, 12, 24, 48 and 96 h old). The survival rates were determined as percentages of postthaw larvae performing active movements for the 6 and 12 h larvae or active cilia movement for the 24, 48 and 96 h larvae. Analyses showed that the difference in survival rates between different age classses was significant in all the experiments conducted, with the maximum survival rate being achieved in the 24-h-old larvae the postthaw survival rates of larvae cryopreserved with 10% dimethyl sulfoxide (93.1 +/- 0.2%) were significantly higher (P < 0.001) that those with 10% propylene glycol (81.5 +/- 0.4%). Differences in postthaw survival rates between different concentrations (1,000 30,000 individuals mL(-1)) were not significant within each of the three larval age classes (6-, 12-, and 24-h-old ) used.
Resumo:
The aim of this study was to optimize the cryopreservation protocols for the sperm of red seabream, Pagrus major. The 2-mL cryovials and programmable freezer were employed for cryopreservation. Six extenders, six cryoprotectants in various concentrations ranging from 6 to 20% (v/v), four cooling rates, and three thawing temperatures were evaluated by postthaw sperm motility and fertility. The ratio of sperm to egg for postthaw sperm fertilization trials was experimentally standardized and was optimal at 500:1. The best motility of postthaw sperm (79.4 +/- 4.7% to 88.6 +/- 8.0%), fertilization rates (89.6 +/- 2.9 to 95.6 +/- 1.9%), and hatching rates (85.3 +/- 5.1% to 91.4 +/- 4.3%) were achieved when Cortland extender, dimethyl sulfoxide (15, 18, and 20%) or ethylene glycol (9, 12%) as cryoprotectants, 20 C/min as the cooling rate, and 40 C as the thawing temperature were employed. Moreover, the results on embryonic development were not significantly different between cryopreserved sperm and fresh sperm during incubation process. In conclusion, these methods of cryopreservation of red seabream sperm are suitable for routine aquaculture application and preservation of genetic resources.
Resumo:
The objective was to identify an appropriate cryoprotectant and protocol for vitrification of red sea bream (Pagrus major) embryos. The toxicity of five single-agent cryoprotectants, dimethyl sulfoxide (DMSO), propylene glycol (PG), ethylene glycol (EG), glycerol (GLY), and methyl alcohol (MeOH), as well as nine cryoprotectant mixtures, were investigated by comparing post-thaw hatching rates. Two vitrifying protocols, a straw method and a solid surface vitrification method (copper floating over liquid nitrogen), were evaluated on the basis of post-thaw embryo morphology. Exposure to single-agent cryoprotectants (10% concentration for 15 min) was not toxic to embryos, whereas for higher concentrations (20 and 30%) and a longer duration of exposure (30 min), DMSO and PG were better tolerated than the other cryoprotectants. Among nine cryoprotectant mixtures, the combination of 20% DMSO + 10% PG + 10% MeOH had the lowest toxicity after exposure for 10 min or 15 min. High percentages of morphologically intact embryos, 50.6 +/- 16.7% (mean +/- S.D.) and 77.8 +/- 15.5%, were achieved by the straw vitrifying method (20.5% DMSO + 15.5% acetamide + 10% PG, thawing at 43 degrees C and washing in 0.5 M sucrose solution for 5 min) and by the solid surface vitrification method (40% GLY, thawing at 22 degrees C and washing in 0.5 M sucrose solution for 5 min). After thawing, morphological changes in the degenerated embryos included shrunken yolks and ruptured chorions. Furthermore, thawed embryos that were morphologically intact did not consistently survive incubation. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
The present work deals with the development of primary cell culture and diploid cell lines from two fishes, such as Poecilia reticulata and Clarias gariepinus. The greatest difficulty experienced was the avoidance of bacterial and fungi contamination. Three types of cell cultures are commonly developed, primary cell culture, diploid cell lines and heteroploid cell lines. Primary cell culture obtained from the animal tissues that have been cultivated in vitro for the first time. They are characterized by the same chromosome number as parent tissue, cultivated in vitro for the first time, have wide range of virus susceptibility, usually not malignant, six chromatin retarded and do not grow as suspension cultures. Diploid cell lines arise from a primary cell culture at the time of subculturing. Diploid cell lines commercially used in virology are W1-38 (human embryonic lung), W1-26 (human embryonic lung) and HEX (Human embryonic kidney). Heteroploid cell lines have been subcultivated with less than 75% of the cells in the population having a diploid chromosome constitution. Tissue cultures have been extensively used in biomedical research. The main applications are in three areas, Karyological studies, Identification and study of hereditary metabolic disorders and Somatic cell genetics. Other applications are in virology and host-parasite relationships. In this study an attempt was made to preserve the ovarian tissue at low temperature in the presence of cryoprotectants so that the tissue can be retrieved at any time and a cell culture could be developed.
Resumo:
Cryopreservation using encapsulation-dehydration was developed for the long-term conservation of cocoa (Theobroma cacao L.) germplasm. Survival of individually encapsulated somatic embryos after desiccation and cryopreservation was achieved through optimization of cryoprotectants (abscisic acid (ABA) and sugar), duration of osmotic and evaporative dehydration, and embryo development stage. Up to 63% of the genotype SPA4 early-cotyledonary somatic embryos survived cryopreservation following 7 days preculture with 1 M sucrose and 4 h silica exposure (16% moisture content in bead). This optimized protocol was successfully applied to three other genotypes, e.g. EET272, IMC14 and AMAZ12, with recovery frequencies of 25, 40 and 72%, respectively (but the latter two genotypes using 0.75 M sucrose). Recovered SPA4 somatic embryos converted to plants at a rate of 33% and the regenerated plants were phenotypically comparable to non-cryopreserved somatic embryo-derived plants.
Resumo:
Os experimentos tiveram como objetivo determinar a taxa de eclosão dos embriões vitrificados em volumes diferentes de 9,0 M de etileno glicol. Simultaneamente, testou-se dois procedimentos de estocagem dos fios de teflon, denominados caixa de aço inoxidável e globete/raque. No experimento I, os 881 embriões coletados foram distribuídos em 4 tratamentos: tratamento 1 (T1= controle): 307 embriões foram cultivados in vitro em meio PBSm, acrescido de 0,4% de BSA; tratamento 2 (T2): 292 embriões foram expostos à solução de glicerol 10% acrescida de 0,4% de BSA, envasados em palhetas de 0,25 mL e submetidos ao congelamento pelo método rápido em Biocool; tratamento 3 (T3): 138 embriões foram expostos durante 2 minutos à solução de desidratação (10% de EG + 6% BSA em PBSm) e então transferidos para a solução de vitrificação (50% de EG + 6% de BSA em PBSm), onde permaneceram por 30 segundos e foram colocados em volume de 1 μL no interior de um fio de teflon, medindo 0,4 mm de diâmetro, 2,0 cm de comprimento e 0,05 mm de espessura. Os fios foram acondicionados em uma caixa de aço inoxidável para serem armazenados em nitrogênio líquido; tratamento 4 (T4): 144 embriões foram expostos à solução de desidratação (10% de EG + 6% BSA em PBSm) e após 2 minutos, foram transferidos para a solução de vitrificação (50% de EG + 6% BSA em PBSm), onde permaneceram por 30 segundos, sendo após transferidos para um volume de 1 μL no interior do fio de teflon. Os fios de teflon foram estocados em globetes unidos às raques e mantidos em nitrogênio líquido. Após o aquecimento, os embriões foram cultivados em PBSm suplementado com 0,4% de BSA. As taxas de eclosão embrionária observadas foram: T1=76,29% (245/307); T2=41,05% (117/292); T3=37,98% (54/138) e T4=26,78% (37/144). No segundo experimento, 747 embriões foram distribuídos em 3 tratamentos: tratamento 1 (T1= controle): 80 embriões foram cultivados in vitro em meio KSOM acrescido de 0,4% de BSA; tratamento 2 (T2): 334 embriões expostos em solução de glicerol 10% acrescida de 0,4% de BSA, foram envasados em palhetas de 0,25 mL e submetidos ao congelamento pelo método rápido em Biocool; tratamento 3 (T3): 333 blastocistos foram expostos durante 2 minutos à solução de desidratação (10% de EG + 0,4% BSA em PBSm) e então transferidos para tubos eppendorf de 2,0 mL em contato com a solução de vitrificação (50% de EG + 0,4% BSA em PBSm). Após o cultivo in vitro, as taxas de eclosão embrionária observadas nos 3 tratamentos foram respectivamente: 88,75% (71/80), 40,44% (141/334) e 19,70% (66/333). Baseado nesses resultados conclui-se que embriões Mus domesticus domesticus submetidos à técnica de vitrificação após exposição à solução de 9,0 M de etileno glicol e envase em fios de teflon assegurou índices satisfatórios de sobrevivência embrionária. As taxas de sobrevivência dos embriões Mus domesticus domesticus foi independente do procedimento de estocagem em botijão de nitrogênio líquido. A vitrificação em solução de 9,0 M de etileno glicol com envase em tubos eppendorf não foi eficiente para promover altas taxas de sobrevivência embrionária, mas proporcionou segurança biológica aos embriões, durante o armazenamento.
Resumo:
The aim of this study was to evaluate the viability in the effect of open pulled straw (OPS) vitrification procedure of sheep embryos after direct transference. Embryos were produced in vivo and cryopreserved in slow freezing or OPS vitrification. The survival rates of cryopreserved embryos were compared to non-frozen standard pattern. In a first set of experiments, embryos at morula and blastocyst stages were dived in ethylene glycol (1.5 M) and frozen in an automatic freezer. After being thawed, they were directly or indirectly transferred to ewes recipient. A second group of embryos were drawn into OPS and plunged into liquid nitrogen after being exposed at room temperature for 1 min and 45 s in 10% EG plus 10% dimethyl sulphoxide (DMSO), then again for 30 s in 20% EG + 20% DMSO + 0.5 M sucrose. After being warmed, embryos were also directly transferred using a French mini straw as the catheter for the transplantation process or after in vitro dilution of cryoprotectants (two-step-process). No significant difference was observed among fresh, frozen or vitrified embryos on pregnancy rate (50.0%, 38.6% and 55.8%). However, when we evaluated only the direct transference, the pregnancy rate of OPS vitrified embryos was higher than that of frozen embryos (57.1% vs 34.8%) (p = 0.07). In addition, vitrified morulae had a higher pregnancy rate than the one with frozen embryos (64.0% vs 38.9%) (p = 0.07). Finally, our results indicate that OPS vitrification technique in association with direct transference improves the viability of sheep embryos with potential applications to field conditions.
Resumo:
While the freezing techniques of mammal embryos have been providing promising results, the cryopreservation of teleostean eggs and embryos have remained unsuccessful up to now. Therefore, this work aimed to develop a procedure of cryogenic preservation of embryos of Prochilodus lineatus and to observe, at both structural and ultrastructural levels, the morphological alterations that took place after the application of freezing/thawing techniques. The embryos at the morula stage could not tolerate exposure to the cryoprotectants ethylene glycol monomethyl ether, propylene glycol monomethyl ether, methanol, dimethyl sulphoxide and propylene glycol, presenting 100% of mortality. Embryos at the 4- to 6-somites stage tolerated exposure to propylene glycol and dimethyl sulphoxide, and the results revealed no significant differences (alpha = 0.05) regarding survival from both treatments. None of the freezing, thawing and hydration protocols was effective on preserving embryo viability. The ultrastructural analyses of frozen and thawed embryos showed that cells from ectoderm, somites, notochord and endoderm were structurally intact, with well preserved nuclei and mitochondria. The yolk globules were able to tolerate the freezing process, but the yolk syncytial layer was unorganized, displaying an electron-dense and compacted appearance, collapsed reticules, nuclei with modified chromatin and ruptures on the plasmatic membrane at the contact zone with endoderm. It might be concluded that the procedures tested for freezing were unable to avoid the formation of intracellular ice crystals, leading to drastic morphological modifications and making P. lineatus embryos unviable.
Resumo:
The use of cryoprotectants and slow cooling rates are routine procedures for the cryopreservation of plant cell lines. However, our results with rice (Oryza sativa L,, ev. Taipei 309) show that calli can be cryopreserved by direct immersion and stored in liquid nitrogen without any cryoprotection, the efficiency of recovery using this method, as well as a conventional method was generally increased with a previous abscisic acid (ABA) treatment. Following cryopreservation, calli demonstrated some differences with respect to unfrozen calli of the same lines, Thus, resistance to freezing stress (- 20 degrees C for 2 h) increased significantly in all lines tested, irrespective of their pre-incubation with ABA, Calli that had been directly stored in liquid nitrogen also demonstrated a higher competence for genetic transformation than their unfrozen counterparts, as indicated by the transient gene expression levels obtained after particle bombardment, These differences might lead to further biotechnological applications, A genetic analysis of amplified DNA polymorphisms was performed with three independent lines that had been subjected to four combinations of ABA treatment and direct immersion in liquid nitrogen, At the loci screened with the randomly amplified polymorphic DNA (RAPD) markers tested, the genetic variations among lines and among calli of the same line appear to bd more related to tissue-culture-induced somaclonal variation than to cryoselection.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Six or 7-day-old equine embryos were divided into 4 groups; Group 1, n = 15, Day 7 embryos destined for immediate transfer; Group 2, n = 15, Day 6 embryos destined for deep-freezing with glycerol plus sucrose as cryoprotectant; Group 3, n = 10, Day 6 embryos destined for deep-freezing with glycerol plus 1,2-propanediol as cryoprotectant and Group 4, n = 3, fresh embryos destined for ultrastructural analysis. All the frozen/thawed embryos were transferred to recipient mares, except 3 embryos in Group 3 that were subjected to ultrastructural analysis. After thawing the cryoprotectants were removed by successive dilutions in PBS + 15% v:v fetal calf serum (FCS) containing decreasing concentrations of the cryoprotectants. Pregnancy was diagnosed ultrasonographically in 53.3%, 13.3% and 0% of the mares in Groups 1, 2 and 3 respectively. Ultrastructural analysis showed differences between frozen/thawed and fresh embryos. In the former, embryonic cells were deformed and showed dilation of the intercellular and perivitelline spaces, a decrease of desmosome number in the junctional complexes, few microvilli on the apical surface of the trophectoderm and an almost total absence of pinocytotic vesicles. Most of the mitochondria showed regions containing dilation and irregularities on the cristae, which appeared electron-dense. The results obtained with Groups 2 and 3 embryos showed that the cryoprotectants employed were not effective in protecting the embryos against damage during freezing and thawing. Indeed, the ultrastructural changes observed in the Group 3 embryos explained the absence of any established pregnancies in this group of mares.
Resumo:
Objective: Compare the cryoprotectants Dimethyl Sulphoxide (DMSO), Ethylene Glycol (EG) and their association for cryopreservation of sheep ovarian cortex. Methodology: Fragments collected from ovaries were divided into 3 parts. 1. One part from sample was destined for analysis of fresh material. 2. The second part was incubated with solution of freezing having 1,5M EG or 1,5M DMSO or 1,5MEG + 1,5M DMSO and washed for dilution of the cryoprotectants. 3. The third part was submitted to cryopreservation using the same cryoprotectans (EG 1,5M; DMSO 1,5M and EG + DMSO 1,5M) and cryopreserved. In all groups, one part of sample was submitted to pre-antral follicles isolation and the remainder was destined to ultra-structural analysis. Results: After isolation of fresh primordial follicles (control), the percentage of viable follicles was 78,9%. The percentage of viable follicles only exposed to cryoprotectants 1,5M EG, 1,5M DMSO and 1,5M EG + 1,5M DMSO was 77,1%, 68,4% and 60,7% respectively. After cryopreservation were 75%, 60% and 55,6% respectively. Ultra-structural analysis of the primordial follicles derived from fresh ovarian fragments or from fragments just exposed to the cryoprotectants showed similar morphology. However, in frozen samples, alterations of mitochondria were observed in all groups. Despite this, the integrity of the remained organelles was preserved in follicles cryopreserved with EG, while that in others groups (DMSO and association) an excess of vacuolizaton in cytoplasm of oocytes and swelling of nuclear membrane was observed indicating degeneration. Conclusion: The Ehilene Glycol seems to be the cryoprotector more adequated for cryopreservation of sheep ovarian tissue.