886 resultados para CRITICAL CARE MEDICINE
Resumo:
Evaluation of the performance of the APACHE III (Acute Physiology and Chronic Health Evaluation) ICU (intensive care unit) and hospital mortality models at the Princess Alexandra Hospital, Brisbane is reported. Prospective collection of demographic, diagnostic, physiological, laboratory, admission and discharge data of 5681 consecutive eligible admissions (1 January 1995 to 1 January 2000) was conducted at the Princess Alexandra Hospital, a metropolitan Australian tertiary referral medical/surgical adult ICU. ROC (receiver operating characteristic) curve areas for the APACHE III ICU mortality and hospital mortality models demonstrated excellent discrimination. Observed ICU mortality (9.1%) was significantly overestimated by the APACHE III model adjusted for hospital characteristics (10.1%), but did not significantly differ from the prediction of the generic APACHE III model (8.6%). In contrast, observed hospital mortality (14.8%) agreed well with the prediction of the APACHE III model adjusted for hospital characteristics (14.6%), but was significantly underestimated by the unadjusted APACHE III model (13.2%). Calibration curves and goodness-of-fit analysis using Hosmer-Lemeshow statistics, demonstrated that calibration was good with the unadjusted APACHE III ICU mortality model, and the APACHE III hospital mortality model adjusted for hospital characteristics. Post hoc analysis revealed a declining annual SMR (standardized mortality rate) during the study period. This trend was present in each of the non-surgical, emergency and elective surgical diagnostic groups, and the change was temporally related to increased specialist staffing levels. This study demonstrates that the APACHE III model performs well on independent assessment in an Australian hospital. Changes observed in annual SMR using such a validated model support an hypothesis of improved survival outcomes 1995-1999.
Resumo:
Liver cirrhosis (LC) can lead to a clinical state of liver failure, which can exacerbate through the course of the disease. New therapies aimed to control the diverse etiologies are now more effective, although the disease may result in advanced stages of liver failure, where liver transplantation (LT) remains the most effective treatment. The extended lifespan of these patients and the extended possibilities of liver support devices make their admission to an intensive care unit (ICU) more probable. In this paper the LC is approached from the point of view of the pathophysiological alterations present in LC patients previous to ICU admission, particularly cardiovascular, but also renal, coagulopathic, and encephalopathic. Infections and available liver detoxifications devices also deserve mentioning. We intend to contribute towards ICU physician readiness to the care for this particular type of patients, possibly in dedicated ICUs.
Resumo:
Neurocritical care is an ever-changing field. The publishers and author of The Flying Publisher Guide to Critical Care in Neurology have made every effort to provide information that is accurate and complete as of the date of publication. However, in view of the rapid changes occurring in medical science, as well as the possibility of human error, this site may contain technical inaccuracies, typographical or other errors. It is the responsibility of the reading physician who must rely on experience and knowledge about the patient to determine the best treatment and care pathway. The information contained herein is provided “as is”, without warranty of any kind. The contributors to this book, including Flying Publisher & Kamps, disclaim responsibility for any errors or omissions or for results obtained from the use of information contained herein.
Resumo:
Critically ill patients depend on artificial nutrition for the maintenance of their metabolic functions and lean body mass, as well as for limiting underfeeding-related complications. Current guidelines recommend enteral nutrition (EN), possibly within the first 48 hours, as the best way to provide the nutrients and prevent infections. EN may be difficult to realize or may be contraindicated in some patients, such as those presenting anatomic intestinal continuity problems or splanchnic ischemia. A series of contradictory trials regarding the best route and timing for feeding have left the medical community with great uncertainty regarding the place of parenteral nutrition (PN) in critically ill patients. Many of the deleterious effects attributed to PN result from inadequate indications, or from overfeeding. The latter is due firstly to the easier delivery of nutrients by PN compared with EN increasing the risk of overfeeding, and secondly to the use of approximate energy targets, generally based on predictive equations: these equations are static and inaccurate in about 70% of patients. Such high uncertainty about requirements compromises attempts at conducting nutrition trials without indirect calorimetry support because the results cannot be trusted; indeed, both underfeeding and overfeeding are equally deleterious. An individualized therapy is required. A pragmatic approach to feeding is proposed: at first to attempt EN whenever and as early as possible, then to use indirect calorimetry if available, and to monitor delivery and response to feeding, and finally to consider the option of combining EN with PN in case of insufficient EN from day 4 onwards.
Resumo:
Background/Aims: Cognitive dysfunction after medical treatment is increasingly being recognized. Studies on this topic require repeated cognitive testing within a short time. However, with repeated testing, practice effects must be expected. We quantified practice effects in a demographically corrected summary score of a neuropsychological test battery repeatedly administered to healthy elderly volunteers. Methods: The Consortium to Establish a Registry for Alzheimer's Disease (CERAD) Neuropsychological Assessment Battery (for which a demographically corrected summary score was developed), phonemic fluency tests, and trail-making tests were administered in healthy volunteers aged 65 years or older on days 0, 7, and 90. This battery allows calculation of a demographically adjusted continuous summary score. Results: Significant practice effects were observed in the CERAD total score and in the word list (learning and recall) subtest. Based on these volunteer data, we developed a threshold for diagnosis of postoperative cognitive dysfunction (POCD) with the CERAD total score. Conclusion: Practice effects with repeated administration of neuropsychological tests must be accounted for in the interpretation of such tests. Ignoring practice effects may lead to an underestimation of POCD. The usefulness of the proposed demographically adjusted continuous score for cognitive function will have to be tested prospectively in patients.
Resumo:
In 2003/2004 the Department of Health, Social Services and Public Safety commissioned a value for money follow-up audit of Anaesthetics, Pain Relief and Critical Care (APRCC) services at twelve Trusts and covering fourteen hospital sites. The original study had reported in 1999/2000. Detailed follow-up reports, together with action plans have been agreed locally with Trusts. The objectives of the follow-up review were to: • Ascertain the progress made in implementing recommendations from the original study; • Provide data to compare performance across Trusts in areas such as: - Pre-operative assessments; - Organisation of post-operative pain relief; - Organisation of chronic pain services; - Levels of admissions to critical care units; - Occupancy in critical care units; and åÊ • Assess the extent of progress made by Trusts in the implementation of the Chief Medical Officer’s (CMO) recommendations from ‘Facing the Future –Building on the Lessons of Winter 1999/2000’. To enable comparisons across Trusts, data was collected for the financial year 2002/2003. In addition, relevant findings from the Audit Commission’s Acute Hospitals Portfolio have also been included. The Acute Hospital Portfolio is a collection of reviews that are undertaken at acute and specialist Trusts. They focus on key service areas and are reported along the key performance criteria of patient experience, efficiency and capacity. åÊ
Resumo:
Anaesthetics, Pain Relief and Critical Care Services in Northern Ireland - Regional Summary (May 2002) Pages 1 to 7 (PDF 276 KB)åÊ Pages 8 to 14 (PDF 392 KB)åÊ Pages 15 to 20 (PDF 265 KB)
Resumo:
OBJECTIVE: To assess whether formatting the medical order sheet has an effect on the accuracy and security of antibiotics prescription. DESIGN: Prospective assessment of antibiotics prescription over time, before and after the intervention, in comparison with a control ward. SETTING: The medical and surgical intensive care unit (ICU) of a university hospital. PATIENTS: All patients hospitalized in the medical or surgical ICU between February 1 and April 30, 1997, and July 1 and August 31, 2000, for whom antibiotics were prescribed. INTERVENTION: Formatting of the medical order sheet in the surgical ICU in 1998. MEASUREMENTS AND MAIN RESULTS: Compliance with the American Society of Hospital Pharmacists' criteria for prescription safety was measured. The proportion of safe orders increased in both units, but the increase was 4.6 times greater in the surgical ICU (66% vs. 74% in the medical ICU and 48% vs. 74% in the surgical ICU). For unsafe orders, the proportion of ambiguous orders decreased by half in the medical ICU (9% vs. 17%) and nearly disappeared in the surgical ICU (1% vs. 30%). The only missing criterion remaining in the surgical ICU was the drug dose unit, which could not be preformatted. The aim of antibiotics prescription (either prophylactic or therapeutic) was indicated only in 51% of the order sheets. CONCLUSIONS: Formatting of the order sheet markedly increased security of antibiotics prescription. These findings must be confirmed in other settings and with different drug classes. Formatting the medical order sheet decreases the potential for prescribing errors before full computerized prescription is available.
Resumo:
OBJECTIVES: Although endogenous nitric oxide (NO) is an excitatory mediator in the central nervous system, inhaled NO is not considered to cause neurologic side effects because of its short half-life. This study was motivated by a recent case report about neurologic symptoms and our own observation of severe electroencephalogram (EEG) abnormalities during NO inhalation. DESIGN: Blind, retrospective analyses of EEGs which were registered before, during, and after NO inhalation. EEG was classified in a 5-point rating system by an independent electroencephalographer who was blinded to the patients' clinical histories. Comparisons were made with the previous evaluation documented at recording. Other EEG-influencing parameters such as oxygen saturation, hemodynamics, electrolytes, and pH were evaluated. SETTING: Pediatric intensive care unit of a tertiary care university children's hospital. PATIENTS: Eleven ventilated, long-term paralyzed, sedated children (1 mo to 14 yrs) who had EEG or clinical assessment before NO treatment and EEG during NO inhalation. They were divided into two groups according to the NO-indication (e.g., congenital heart defect, acute respiratory distress syndrome). MEASUREMENTS AND MAIN RESULTS: All 11 patients had an abnormal EEG during NO inhalation. EEG-controls without NO showed remarkable improvement. EEG abnormalities were background slowing, low voltage, suppression burst (n = 2), and sharp waves (n = 2) independent of patients' age, NO-indication, and other EEG-influencing parameters. CONCLUSIONS: These preliminary data suggest the occurrence of EEG-abnormalities after application of inhaled NO in critically ill children. We found no correlation with other potential EEG-influencing parameters, although clinical state, medication, or hypoxemia might contribute. Comprehensive, prospective, clinical assessment regarding a causal relationship between NO-inhalation and EEG-abnormalities and their clinical importance is needed.
Resumo:
OBJECTIVES: To examine predictors and the prognostic value of electrographic seizures (ESZs) and periodic epileptiform discharges (PEDs) in medical intensive care unit (MICU) patients without a primary acute neurologic condition. DESIGN: Retrospective study. SETTING: MICU in a university hospital. PATIENTS: A total of 201 consecutive patients admitted to the MICU between July 2004 and January 2007 without known acute neurologic injury and who underwent continuous electroencephalography monitoring (cEEG) for investigation of possible seizures or changes in mental status. INTERVENTION: None. MEASUREMENTS AND MAIN RESULTS: Median time from intensive care unit (ICU) admission to cEEG was 1 day (interquartile range 1-4). The majority of patients (60%) had sepsis as the primary admission diagnosis and 48% were comatose at the time of cEEG. Ten percent (n = 21) of patients had ESZs, 17% (n = 34) had PEDs, 5% (n = 10) had both, and 22% (n = 45) had either ESZs or PEDs. Seizures during cEEG were purely electrographic (no detectable clinical correlate) in the majority (67%) of patients. Patients with sepsis had a higher rate of ESZs or PEDs than those without sepsis (32% vs. 9%, p < 0.001). On multivariable analysis, sepsis at ICU admission was the only significant predictor of ESZs or PEDs (odds ratio 4.6, 95% confidence interval 1.9-12.7, p = 0.002). After controlling for age, coma, and organ dysfunction, the presence of ESZs or PEDs was associated with death or severe disability at hospital discharge (89% with ESZs or PEDs, vs. 39% if not; odds ratio 19.1, 95% confidence interval 6.3-74.6, p < 0.001). CONCLUSION: In this retrospective study of MICU patients monitored with cEEG, ESZs and PEDs were frequent, predominantly in patients with sepsis. Seizures were mainly nonconvulsive. Both seizures and periodic discharges were associated with poor outcome. Prospective studies are warranted to determine more precisely the frequency and clinical impact of nonconvulsive seizures and periodic discharges, particularly in septic patients.
Resumo:
OBJECTIVES: To provide a global, up-to-date picture of the prevalence, treatment, and outcomes of Candida bloodstream infections in intensive care unit patients and compare Candida with bacterial bloodstream infection. DESIGN: A retrospective analysis of the Extended Prevalence of Infection in the ICU Study (EPIC II). Demographic, physiological, infection-related and therapeutic data were collected. Patients were grouped as having Candida, Gram-positive, Gram-negative, and combined Candida/bacterial bloodstream infection. Outcome data were assessed at intensive care unit and hospital discharge. SETTING: EPIC II included 1265 intensive care units in 76 countries. PATIENTS: Patients in participating intensive care units on study day. INTERVENTIONS: None. MEASUREMENT AND MAIN RESULTS: Of the 14,414 patients in EPIC II, 99 patients had Candida bloodstream infections for a prevalence of 6.9 per 1000 patients. Sixty-one patients had candidemia alone and 38 patients had combined bloodstream infections. Candida albicans (n = 70) was the predominant species. Primary therapy included monotherapy with fluconazole (n = 39), caspofungin (n = 16), and a polyene-based product (n = 12). Combination therapy was infrequently used (n = 10). Compared with patients with Gram-positive (n = 420) and Gram-negative (n = 264) bloodstream infections, patients with candidemia were more likely to have solid tumors (p < .05) and appeared to have been in an intensive care unit longer (14 days [range, 5-25 days], 8 days [range, 3-20 days], and 10 days [range, 2-23 days], respectively), but this difference was not statistically significant. Severity of illness and organ dysfunction scores were similar between groups. Patients with Candida bloodstream infections, compared with patients with Gram-positive and Gram-negative bloodstream infections, had the greatest crude intensive care unit mortality rates (42.6%, 25.3%, and 29.1%, respectively) and longer intensive care unit lengths of stay (median [interquartile range]) (33 days [18-44], 20 days [9-43], and 21 days [8-46], respectively); however, these differences were not statistically significant. CONCLUSION: Candidemia remains a significant problem in intensive care units patients. In the EPIC II population, Candida albicans was the most common organism and fluconazole remained the predominant antifungal agent used. Candida bloodstream infections are associated with high intensive care unit and hospital mortality rates and resource use.
Resumo:
BACKGROUND: Multiple electrode aggregometry (MEA) is a point-of-care test evaluating platelet function and the efficacy of platelet inhibitors. In MEA, electrical impedance of whole blood is measured after addition of a platelet activator. Reduced impedance implies platelet dysfunction or the presence of platelet inhibitors. MEA plays an increasingly important role in the management of perioperative platelet dysfunction. In vitro, midazolam, propofol, lidocaine and magnesium have known antiplatelet effects and these may interfere with MEA interpretation. OBJECTIVE: To evaluate the extent to which MEA is modified in the presence of these drugs. DESIGN: An in-vitro study using blood collected from healthy volunteers. SETTING: Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland, 2010 to 2011. PATIENTS: Twenty healthy volunteers. INTERVENTION: Measurement of baseline MEA was using four activators: arachidonic acid, ADP, TRAP-6 and collagen. The study drugs were then added in three increasing, clinically relevant concentrations. MAIN OUTCOME MEASURE: MEA was compared with baseline for each study drug. RESULTS: Midazolam, propofol and lidocaine showed no effect on MEA at any concentration. Magnesium at 2.5 mmol l had a significant effect on the ADP and TRAP tests (31 ± 13 and 96 ± 39 AU, versus 73 ± 21 and 133 ± 28 AU at baseline, respectively), and a less pronounced effect at 1 mmol l on the ADP test (39 ± 0 AU). CONCLUSION: Midazolam, propofol and lidocaine do not interfere with MEA measurement. In patients treated with high to normal doses of magnesium, MEA results for ADP and TRAP-tests should be interpreted with caution. TRIAL REGISTRATION: Clinicaltrials.gov (no. NCT01454427).