993 resultados para CPL Criterion Function
Resumo:
We consider a fully complex-valued radial basis function (RBF) network for regression and classification applications. For regression problems, the locally regularised orthogonal least squares (LROLS) algorithm aided with the D-optimality experimental design, originally derived for constructing parsimonious real-valued RBF models, is extended to the fully complex-valued RBF (CVRBF) network. Like its real-valued counterpart, the proposed algorithm aims to achieve maximised model robustness and sparsity by combining two effective and complementary approaches. The LROLS algorithm alone is capable of producing a very parsimonious model with excellent generalisation performance while the D-optimality design criterion further enhances the model efficiency and robustness. By specifying an appropriate weighting for the D-optimality cost in the combined model selecting criterion, the entire model construction procedure becomes automatic. An example of identifying a complex-valued nonlinear channel is used to illustrate the regression application of the proposed fully CVRBF network. The proposed fully CVRBF network is also applied to four-class classification problems that are typically encountered in communication systems. A complex-valued orthogonal forward selection algorithm based on the multi-class Fisher ratio of class separability measure is derived for constructing sparse CVRBF classifiers that generalise well. The effectiveness of the proposed algorithm is demonstrated using the example of nonlinear beamforming for multiple-antenna aided communication systems that employ complex-valued quadrature phase shift keying modulation scheme. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
An orthogonal forward selection (OFS) algorithm based on leave-one-out (LOO) criteria is proposed for the construction of radial basis function (RBF) networks with tunable nodes. Each stage of the construction process determines an RBF node, namely, its center vector and diagonal covariance matrix, by minimizing the LOO statistics. For regression application, the LOO criterion is chosen to be the LOO mean-square error, while the LOO misclassification rate is adopted in two-class classification application. This OFS-LOO algorithm is computationally efficient, and it is capable of constructing parsimonious RBF networks that generalize well. Moreover, the proposed algorithm is fully automatic, and the user does not need to specify a termination criterion for the construction process. The effectiveness of the proposed RBF network construction procedure is demonstrated using examples taken from both regression and classification applications.
Resumo:
New construction algorithms for radial basis function (RBF) network modelling are introduced based on the A-optimality and D-optimality experimental design criteria respectively. We utilize new cost functions, based on experimental design criteria, for model selection that simultaneously optimizes model approximation, parameter variance (A-optimality) or model robustness (D-optimality). The proposed approaches are based on the forward orthogonal least-squares (OLS) algorithm, such that the new A-optimality- and D-optimality-based cost functions are constructed on the basis of an orthogonalization process that gains computational advantages and hence maintains the inherent computational efficiency associated with the conventional forward OLS approach. The proposed approach enhances the very popular forward OLS-algorithm-based RBF model construction method since the resultant RBF models are constructed in a manner that the system dynamics approximation capability, model adequacy and robustness are optimized simultaneously. The numerical examples provided show significant improvement based on the D-optimality design criterion, demonstrating that there is significant room for improvement in modelling via the popular RBF neural network.
Resumo:
The combination of the synthetic minority oversampling technique (SMOTE) and the radial basis function (RBF) classifier is proposed to deal with classification for imbalanced two-class data. In order to enhance the significance of the small and specific region belonging to the positive class in the decision region, the SMOTE is applied to generate synthetic instances for the positive class to balance the training data set. Based on the over-sampled training data, the RBF classifier is constructed by applying the orthogonal forward selection procedure, in which the classifier structure and the parameters of RBF kernels are determined using a particle swarm optimization algorithm based on the criterion of minimizing the leave-one-out misclassification rate. The experimental results on both simulated and real imbalanced data sets are presented to demonstrate the effectiveness of our proposed algorithm.
Resumo:
We develop a new sparse kernel density estimator using a forward constrained regression framework, within which the nonnegative and summing-to-unity constraints of the mixing weights can easily be satisfied. Our main contribution is to derive a recursive algorithm to select significant kernels one at time based on the minimum integrated square error (MISE) criterion for both the selection of kernels and the estimation of mixing weights. The proposed approach is simple to implement and the associated computational cost is very low. Specifically, the complexity of our algorithm is in the order of the number of training data N, which is much lower than the order of N2 offered by the best existing sparse kernel density estimators. Numerical examples are employed to demonstrate that the proposed approach is effective in constructing sparse kernel density estimators with comparable accuracy to those of the classical Parzen window estimate and other existing sparse kernel density estimators.
Resumo:
A new sparse kernel density estimator is introduced. Our main contribution is to develop a recursive algorithm for the selection of significant kernels one at time using the minimum integrated square error (MISE) criterion for both kernel selection. The proposed approach is simple to implement and the associated computational cost is very low. Numerical examples are employed to demonstrate that the proposed approach is effective in constructing sparse kernel density estimators with competitive accuracy to existing kernel density estimators.
Resumo:
tWe develop an orthogonal forward selection (OFS) approach to construct radial basis function (RBF)network classifiers for two-class problems. Our approach integrates several concepts in probabilisticmodelling, including cross validation, mutual information and Bayesian hyperparameter fitting. At eachstage of the OFS procedure, one model term is selected by maximising the leave-one-out mutual infor-mation (LOOMI) between the classifier’s predicted class labels and the true class labels. We derive theformula of LOOMI within the OFS framework so that the LOOMI can be evaluated efficiently for modelterm selection. Furthermore, a Bayesian procedure of hyperparameter fitting is also integrated into theeach stage of the OFS to infer the l2-norm based local regularisation parameter from the data. Since eachforward stage is effectively fitting of a one-variable model, this task is very fast. The classifier construc-tion procedure is automatically terminated without the need of using additional stopping criterion toyield very sparse RBF classifiers with excellent classification generalisation performance, which is par-ticular useful for the noisy data sets with highly overlapping class distribution. A number of benchmarkexamples are employed to demonstrate the effectiveness of our proposed approach.
Resumo:
A new and simple criterion with which to quantitatively predict the glass forming ability (GFA) of metallic alloys is proposed. It was found that the critical cooling rate for glass formation (R-C) correlates well with a proper combination of two factors, the minimum topological instability (lambda(min)) and the Delta h parameter, which depends on the average work function difference (Delta phi) and the average electron density difference (Delta n(ws)(1/3)) among the constituent elements of the alloy. A correlation coefficient (R-2) of 0.76 was found between R-c and the new criterion for 68 alloys in 30 different metallic systems. The new criterion and the Uhlmann's approach were used to estimate the critical amorphous thickness (Z(C)) of alloys in the Cu-Zr system. The new criterion underestimated R-C in the Cu-Zr system, producing predicted Z(C) values larger than those observed experimentally. However, when considering a scale factor, a remarkable similarity was observed between the predicted and the experimental behavior of the GFA in the binary Cu-Zr. When using the same scale factor and performing the calculation for the ternary Zr-Cu-Al, good agreement was found between the predicted and the actual best GFA region, as well as between the expected and the observed critical amorphous thickness. (C) 2012 American Institute of Physics. [doi:10.1063/1.3676196]
Resumo:
Lung function is a major criterion used to assess asthma control. Fluctuation analyses can account for lung function history over time, and may provide an additional dimension to characterise control. The relationships between mean and fluctuations in lung function with asthma control, exacerbation and quality of life were studied in two independent data sets.
Resumo:
Nonlinear computational analysis of materials showing elasto-plasticity or damage relies on knowledge of their yield behavior and strengths under complex stress states. In this work, a generalized anisotropic quadric yield criterion is proposed that is homogeneous of degree one and takes a convex quadric shape with a smooth transition from ellipsoidal to cylindrical or conical surfaces. If in the case of material identification, the shape of the yield function is not known a priori, a minimization using the quadric criterion will result in the optimal shape among the convex quadrics. The convexity limits of the criterion and the transition points between the different shapes are identified. Several special cases of the criterion for distinct material symmetries such as isotropy, cubic symmetry, fabric-based orthotropy and general orthotropy are presented and discussed. The generality of the formulation is demonstrated by showing its degeneration to several classical yield surfaces like the von Mises, Drucker–Prager, Tsai–Wu, Liu, generalized Hill and classical Hill criteria under appropriate conditions. Applicability of the formulation for micromechanical analyses was shown by transformation of a criterion for porous cohesive-frictional materials by Maghous et al. In order to demonstrate the advantages of the generalized formulation, bone is chosen as an example material, since it features yield envelopes with different shapes depending on the considered length scale. A fabric- and density-based quadric criterion for the description of homogenized material behavior of trabecular bone is identified from uniaxial, multiaxial and torsional experimental data. Also, a fabric- and density-based Tsai–Wu yield criterion for homogenized trabecular bone from in silico data is converted to an equivalent quadric criterion by introduction of a transformation of the interaction parameters. Finally, a quadric yield criterion for lamellar bone at the microscale is identified from a nanoindentation study reported in the literature, thus demonstrating the applicability of the generalized formulation to the description of the yield envelope of bone at multiple length scales.
Resumo:
The Surgeon General recommends preschoolers 3-5 years old accumulate 60 minutes of moderate-to-vigorous physical activity (MVPA) per day. However, there is limited data measuring physical activity (PA) and MVPA amongst this population. The purpose of this cross-sectional study is to determine the validity, reliability, and feasibility of using MVP 4 Function Walk4Life digital pedometers (MVP-4) in measuring MVPA among preschoolers using the newly modified direct observational technique, System for Observing Fitness Instruction Time-Preschool Version (SOFIT-P) as the gold standard. An ethnically diverse population of 3-5 year old underserved children were recruited from two Harris County Department of Education (HCDE) Head Start centers. For 2 days at baseline and 2 days at post-test, 75 children enrolled wore MVP-4 pedometers for approximately 6-hours per observation day and were observed using SOFIT-P during predominantly active times. Statistical analyses used Pearson "r" correlation coefficients to determine mean minutes of PA and MVPA, convergent and criterion validity, and reliability. Significance was set at p = <0.05. Feasibility was determined through process evaluation information collected during this study via observations from data collectors and teacher input. Results show mean minutes of PA and MVPA ranged between 30-42 and 11-14 minutes, respectively. Convergent validity comparing BMI percentiles with MVP-4 PA outcomes show no significance at pre-test; however, each measurement at post-test showed significance for MVPA (p = 0.0247, p = 0.0056), respectively. Criterion validity comparing percent MVPA time between SOFIT-P and MVP-4 pedometers was determined; however, results deemed insufficient due to inconsistency in observation times while using the newly developed SOFIT-P. Reliability measures show no significance at pre-test, yet show significant results for all PA outcomes at post-test (p = 0.001, p = 0.001, p = 0.0010, p = 0.003), respectively. Finally, MVP-4 pedometers lacked feasibility due to logistical barriers in design. Researchers feel the significant results at post-test are secondary to increased familiarity and more accurate placement of pedometers across time. Researchers suggest manufacturers of MVP-4 pedometers further modify the instrument for ease of use with this population, following which future studies ought to determine validity using objective measures or all-day direct observation techniques.^
Resumo:
Many existing engineering works model the statistical characteristics of the entities under study as normal distributions. These models are eventually used for decision making, requiring in practice the definition of the classification region corresponding to the desired confidence level. Surprisingly enough, however, a great amount of computer vision works using multidimensional normal models leave unspecified or fail to establish correct confidence regions due to misconceptions on the features of Gaussian functions or to wrong analogies with the unidimensional case. The resulting regions incur in deviations that can be unacceptable in high-dimensional models. Here we provide a comprehensive derivation of the optimal confidence regions for multivariate normal distributions of arbitrary dimensionality. To this end, firstly we derive the condition for region optimality of general continuous multidimensional distributions, and then we apply it to the widespread case of the normal probability density function. The obtained results are used to analyze the confidence error incurred by previous works related to vision research, showing that deviations caused by wrong regions may turn into unacceptable as dimensionality increases. To support the theoretical analysis, a quantitative example in the context of moving object detection by means of background modeling is given.
Resumo:
A coupled elastoplastic-damage constitutive model with Lode angle dependent failure criterion for high strain and ballistic applications is presented. A Lode angle dependent function is added to the equivalent plastic strain to failure definition of the Johnson–Cook failure criterion. The weakening in the elastic law and in the Johnson–Cook-like constitutive relation implicitly introduces the Lode angle dependency in the elastoplastic behaviour. The material model is calibrated for precipitation hardened Inconel 718 nickel-base superalloy. The combination of a Lode angle dependent failure criterion with weakened constitutive equations is proven to predict fracture patterns of the mechanical tests performed and provide reliable results. Additionally, the mesh size dependency on the prediction of the fracture patterns was studied, showing that was crucial to predict such patterns
Resumo:
The present study explores a “hydrophobic” energy function for folding simulations of the protein lattice model. The contribution of each monomer to conformational energy is the product of its “hydrophobicity” and the number of contacts it makes, i.e., E(h⃗, c⃗) = −Σi=1N cihi = −(h⃗.c⃗) is the negative scalar product between two vectors in N-dimensional cartesian space: h⃗ = (h1, … , hN), which represents monomer hydrophobicities and is sequence-dependent; and c⃗ = (c1, … , cN), which represents the number of contacts made by each monomer and is conformation-dependent. A simple theoretical analysis shows that restrictions are imposed concomitantly on both sequences and native structures if the stability criterion for protein-like behavior is to be satisfied. Given a conformation with vector c⃗, the best sequence is a vector h⃗ on the direction upon which the projection of c⃗ − c̄⃗ is maximal, where c̄⃗ is the diagonal vector with components equal to c̄, the average number of contacts per monomer in the unfolded state. Best native conformations are suggested to be not maximally compact, as assumed in many studies, but the ones with largest variance of contacts among its monomers, i.e., with monomers tending to occupy completely buried or completely exposed positions. This inside/outside segregation is reflected on an apolar/polar distribution on the corresponding sequence. Monte Carlo simulations in two dimensions corroborate this general scheme. Sequences targeted to conformations with large contact variances folded cooperatively with thermodynamics of a two-state transition. Sequences targeted to maximally compact conformations, which have lower contact variance, were either found to have degenerate ground state or to fold with much lower cooperativity.
Resumo:
Quantitative olfactory assessment is often neglected in clinical practice, although olfactory loss can assist diagnosis and leads to significant morbidity. The aim of this study was to develop normative data for the Australian population for the 'Sniffin' Sticks', an internationally established olfactory function test. As in other populations, Australian females performed better than males and both lost olfactory function with age. From the normative data, criterion test scores for males and females were established for clinical classifications ('normosmic', 'hyposmic', and 'anosmic'). These clinical classifications were assessed in Parkinson's patients: 81.1 % were anosmic or severely hyposmic and only 7.7% were normosmic. A new term ('prebyosmia') is introduced to describe age-related loss of olfactory capacity of unknown aetiology. With these norms, the Sniffin' Sticks can be used in the Australian population to compare an individual's olfactory function against the population of others of similar age and sex and to identify olfactory dysfunction. (C) 2003 Elsevier Ltd. All rights reserved.