939 resultados para COOLING
Resumo:
By a standard application of Jones's method associated with the Wiener-Hopf technique an explicit solution is obtained for the temperature distribution inside a cylindrical rod with an insulated inner core when the rod is allowed to enter into a fluid of large extent with a uniform speed, and a simple integral expression is derived for the value of the sputtering temperature of the rod at the points of entry. Numerical results under certain special circumstances are also obtained and presented in the form of a table.
Resumo:
Experimental investigations are carried out in the IISc hypersonic shock tunnel on film cooling effectiveness of a single jet (diameter 2 mm and 0.9 mm), and an array forward facing of micro-jets (diameter 300 mu m each) of same effective area (corresponding to the respective single jet). The single jet and the corresponding micro-jets are injected from the stagnation zone of a blunt cone model (58, apex angle and nose radius of 35 mm). Nitrogen and Helium are injected as coolant gases. Experiments are performed at freestream Mach number 5.9, at 0 degrees angle of attack, with a stagnation enthalpy of 1.84 MJ/kg, with and without injections. The ratios of the jet stagnation pressure to the freestream pitot pressure used in the present study are 1.2 and 1.45. Up to 50% reduction in surface heat transfer rate was observed with the array of micro-jets, compared to that of the respective single jet with nitrogen as the coolant, while the corresponding eduction was up to 37% for helium injection, with the schlieren flow visualizations showing no major change in the shock standoff distance, and thus no major changes in other aerodynamic aspects such as drag.
Resumo:
A hot billet in contact with relatively cold dies undergoes rapid cooling in the forging operation. This may give rise to unfilled cavities, poor surface finish and stalling of the press. A knowledge of billet-die temperatures as a function of time is therefore essential for process design. A computer code using finite difference method is written to estimate such temperature histories and validated by comparing the predicted cooling of an integral die-billet configuration with that obtained experimentally.
Resumo:
Boundary layer flow visualization in water with surface heat transfer was carried out on a body of revolution which had the predicted possibility of laminar separation under isothermal conditions. Flow visualization was by in-line holographic technique. Boundary layer stabilization, including elimination of laminar separation, was observed to take place on surface heating. Conversely, boundary layer destabilization was observed on surface cooling. These findings are consistent with the theoretical predictions of Wazzan et al. in The stability and transition of heated and cooled incompressible laminar boundary layers, in Proceedings of the Fourth International Heat Transfer Conference, Vol. 2, FCI 4. Elsevier, Amsterdam (1970).
Resumo:
This study compared the effects of a low-frequency electrical stimulation (LFES; Veinoplus® Sport, Ad Rem Technology, Paris, France), a low-frequency electrical stimulation combined with a cooling vest (LFESCR) and an active recovery combined with a cooling vest (ACTCR) as recovery strategies on performance (racing time and pacing strategies), physiologic and perceptual responses between two sprint kayak simulated races, in a hot environment (∼32 wet-bulb-globe temperature). Eight elite male kayakers performed two successive 1000-m kayak time trials (TT1 and TT2), separated by a short-term recovery period, including a 30-min of the respective recovery intervention protocol, in a randomized crossover design. Racing time, power output, and stroke rate were recorded for each time trial. Blood lactate concentration, pH, core, skin and body temperatures were measured before and after both TT1 and TT2 and at mid- and post-recovery intervention. Perceptual ratings of thermal sensation were also collected. LFESCR was associated with a very likely effect in performance restoration compared with ACTCR (99/0/1%) and LFES conditions (98/0/2%). LFESCR induced a significant decrease in body temperature and thermal sensation at post-recovery intervention, which is not observed in ACTCR condition. In conclusion, the combination of LFES and wearing a cooling vest (LFESCR) improves performance restoration between two 1000-m kayak time trials achieved by elite athletes, in the heat.
Resumo:
A mixed boundary value problem associated with the diffusion equation, that involves the physical problem of cooling of an infinite parallel-sided composite slab, is solved completely by using the Wiener-Hopf technique. An analytical expression is derived for the sputtering temperature at the quench front being created by a cold fluid moving on the upper surface of the slab at a constant speed v. The dependence of the various configurational parameters of the problem under consideration, on the sputtering temperature, is rather complicated and representative tables of numerical values of this important physical quantity are prepared for certain typical values of these parameters. Asymptotic results in their most simplified forms are also obtained when (i) the ratio of the thicknesses of the two materials comprising the slab is very much smaller than unity, and (ii) the quench-front speed v is very large, keeping the other parameters fixed, in both the cases.
Resumo:
We investigate the transition of a radiatively inefficient phase of a viscous two temperature accreting flow to a cooling dominated phase and vice versa around black holes. Based on a global sub-Keplerian accretion disk model in steady state, including explicit cooling processes self-consistently, we show that general advective accretion flow passes through various phases during its infall towards a black hole. Bremsstrahlung, synchrotron and inverse Comptonization of soft photons are considered as possible cooling mechanisms. Hence the flow governs a much lower electron temperature similar to 10(8) - 10(9.5) K compared to the hot protons of temperature similar to 10(10.2) - 10(11.8) K in the range of the accretion rate in Eddington units 0.01 less than or simiar to (M) over dot less than or similar to 100. Therefore, the solutions may potentially explain the hard X-rays and the gamma-rays emitted from AGNs and X-ray binaries. We finally compare the solutions for two different regimes of viscosity and conclude that a weakly viscous flow is expected to be cooling dominated compared to its highly viscous counterpart which is radiatively inefficient. The flow is successfully able to reproduce the observed minosities of the under-fed AGNs and quasars (e.g. Sgr A*), ultra-luminous X-ray sources (e.g. SS433), as well as the highly luminous AGNs and ultra-luminous quasars (e.g. PKS 0743-67) at different combinations of the mass accretion rate and ratio of specific heats.
Resumo:
We investigate viscous two-temperature accretion disc flows around rotating black holes. We describe the global solution of accretion flows with a sub-Keplerian angular momentum profile, by solving the underlying conservation equations including explicit cooling processes self-consistently. Bremsstrahlung, synchrotron and inverse Comptonization of soft photons are considered as possible cooling mechanisms. We focus on the set of solutions for sub-Eddington, Eddington and super-Eddington mass accretion rates around Schwarzschild and Kerr black holes with a Kerr parameter of 0.998. It is found that the flow, during its infall from the Keplerian to sub-Kepleria transition region to the black hole event horizon, passes through various phases of advection: the general advective paradigm to the radiatively inefficient phase, and vice versa. Hence, the flow governs a much lower electron temperature similar to 10(8)-10(9.5) K, in the range of accretion rate in Eddington units 0.01 less than or similar to (M) over dot less than or similar to 100, compared to the hot protons of temperature similar to 10(10.2)-10(11.8) K. Therefore, the solution may potentially explain the hard X-rays and gamma-rays emitted from active galactic nuclei (AGNs) and X-ray binaries. We then compare the solutions for two different regimes of viscosity. We conclude that a weakly viscous flow is expected to be cooling dominated, particularly at the inner region of the disc, compared to its highly viscous counterpart, which is radiatively inefficient. With all the solutions in hand, we finally reproduce the observed luminosities of the underfed AGNs and quasars (e. g. Sgr A*) to ultraluminous X-ray sources (e. g. SS433), at different combinations of input parameters, such as the mass accretion rate and the ratio of specific heats. The set of solutions also predicts appropriately the luminosity observed in highly luminous AGNs and ultraluminous quasars (e. g. PKS 0743-67).
Resumo:
Structural relaxation behavior of a rapidly quenched (RQ) and a slowly cooled Pd40Cu30Ni10P20 metallic glass was investigated and compared. Differential scanning calorimetry was employed to monitor the relaxation enthalpies at the glass transition temperature, T-g , and the Kolrausch-Williams-Watts (KWW) stretched exponential function was used to describe its variation with annealing time. It was found that the rate of enthalpy recovery is higher in the ribbon, implying that the bulk is more resistant to relaxation at low temperatures of annealing. This was attributed to the possibility of cooling rate affecting the locations where the glasses get trapped within the potential energy landscape. The RQ process traps a larger amount of free volume, resulting in higher fragility, and in turn relaxes at the slightest thermal excitation (annealing). The slowly cooled bulk metallic glass (BMG), on the other hand, entraps lower free volume and has more short-range ordering, hence requiring a large amount of perturbation to access lower energy basins.
Resumo:
A laboratory model of a thermally driven adsorption refrigeration system with activated carbon as the adsorbent and 1,1,1,2-tetrafluoroethane (HFC 134a) as the refrigerant was developed. The single stage compression system has an ensemble of four adsorbers packed with Maxsorb II specimen of activated carbon that provide a near continuous flow which caters to a cooling load of up to 5W in the 5-18 degrees C region. The objective was to utilise the low grade thermal energy to drive a refrigeration system that can be used to cool some critical electronic components. The laboratory model was tested for it performance at various cooling loads with the heat source temperature from 73 to 93 degrees C. The pressure transients during heating and cooling phases were traced. The cyclic steady state and transient performance data are presented. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The application of different cooling rates as a strategy to enhance the structure of aluminium foams is studied. The potential to influence the level of morphological defects and cell size non-uniformities is investigated. AlSi6Cu4 alloy was foamed through the powder compact route and then solidified, applying three different cooling rates. Foam development was monitored in situ by means of X-ray radioscopy while foaming inside a closed mould. The macro-structure of the foams was analysed in terms of cell size distribution as determined by X-ray tomography. Compression tests were conducted to assess the mechanical performance of the foams and measured properties were correlated with structural features of the foams. Moreover, possible changes in the ductile brittle nature of deformation with cooling rate were analysed by studying the initial stages of deformation. We observed improvements in the cell size distributions, reduction in microporosity and grain size at higher cooling rates, which in turn led to a notable enhancement in compressive strength. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
The authors have developed a simple continuous-cooling method to determine specific heat of liquids and solids in the temperature range 100-300 K. The technique employs very simple instrumentation and continuously records the sample temperature as it cools to the bath temperature through a calibrated heat link. They have obtained specific heat values which agree with the reported data to within 3% for the samples investigated. This method also facilitates easy detection of abrupt changes in specific heat, as demonstrated in the observation of glass transition in some organic glass-forming systems. The method is sensitive to the study of relaxing heat capacity in supercooled liquids.
Resumo:
Preparation of semisolid slurry using a cooling slope is increasingly becoming popular, primarily because of the simplicity in design and ease control of the process. In this process, liquid alloy is poured down an inclined surface which is cooled from underneath. The cooling enables partial solidification and the incline provides the necessary shear for producing semisolid slurry. However, the final microstructure of the ingot depends on several process parameters such as cooling rate, incline angle of the cooling slope, length of the slope and initial melt superheat. In this work, a CFD model using volume of fluid (VOF) method for simulating flow along the cooling slope was presented. Equations for conservation of mass, momentum, energy and species were solved to predict hydrodynamic and thermal behavior, in addition to predicting solid fraction distribution and macrosegregation. Solidification was modeled using an enthalpy approach and a volume averaged technique for the different phases. The mushy region was modeled as a multi-layered porous medium consisting of fixed columnar dendrites and mobile equiaxed/fragmented grains. The alloy chosen for the study was aluminum alloy A356, for which adequate experimental data were available in the literature. The effects of two key process parameters, namely the slope angle and the pouring temperature, on temperature distribution, velocity distribution and macrosegregation were also studied.
Resumo:
A mixed boundary value problem associated with the diffusion equation that involves the physical problem of cooling of an infinite parallel-sided composite slab in a two-fluid medium, is solved completely by using the Wiener-Hopf technique. An analytical solution is derived for the temperature distribution at the quench fronts being created by two different layers of cold fluids having different cooling abilities moving on the upper surface of the slab at constant speedv. Simple expressions are derived for the values of the sputtering temperatures of the slab at the points of contact with the respective layers, assuming the front layer of the fluid to be of finite width and the back layer of infinite extent. The main problem is solved through a three-part Wiener-Hopf problem of a special type and the numerical results under certain special circumstances are obtained and presented in the form of a table.