982 resultados para CONTROL CHART
Resumo:
Change point estimation is recognized as an essential tool of root cause analyses within quality control programs as it enables clinical experts to search for potential causes of change in hospital outcomes more effectively. In this paper, we consider estimation of the time when a linear trend disturbance has occurred in survival time following an in-control clinical intervention in the presence of variable patient mix. To model the process and change point, a linear trend in the survival time of patients who underwent cardiac surgery is formulated using hierarchical models in a Bayesian framework. The data are right censored since the monitoring is conducted over a limited follow-up period. We capture the effect of risk factors prior to the surgery using a Weibull accelerated failure time regression model. We use Markov Chain Monte Carlo to obtain posterior distributions of the change point parameters including the location and the slope size of the trend and also corresponding probabilistic intervals and inferences. The performance of the Bayesian estimator is investigated through simulations and the result shows that precise estimates can be obtained when they are used in conjunction with the risk-adjusted survival time cumulative sum control chart (CUSUM) control charts for different trend scenarios. In comparison with the alternatives, step change point model and built-in CUSUM estimator, more accurate and precise estimates are obtained by the proposed Bayesian estimator over linear trends. These superiorities are enhanced when probability quantification, flexibility and generalizability of the Bayesian change point detection model are also considered.
Resumo:
Processos de produção precisam ser avaliados continuamente para que funcionem de modo mais eficaz e eficiente possível. Um conjunto de ferramentas utilizado para tal finalidade é denominado controle estatístico de processos (CEP). Através de ferramentas do CEP, o monitoramento pode ser realizado periodicamente. A ferramenta mais importante do CEP é o gráfico de controle. Nesta tese, foca-se no monitoramento de uma variável resposta, por meio dos parâmetros ou coeficientes de um modelo de regressão linear simples. Propõe-se gráficos de controle χ2 adaptativos para o monitoramento dos coeficientes do modelo de regressão linear simples. Mais especificamente, são desenvolvidos sete gráficos de controle χ2 adaptativos para o monitoramento de perfis lineares, a saber: gráfico com tamanho de amostra variável; intervalo de amostragem variável; limites de controle e de advertência variáveis; tamanho de amostra e intervalo de amostragem variáveis; tamanho de amostra e limites variáveis; intervalo de amostragem e limites variáveis e por fim, com todos os parâmetros de projeto variáveis. Medidas de desempenho dos gráficos propostos foram obtidas através de propriedades de cadeia de Markov, tanto para a situação zero-state como para a steady-state, verificando-se uma diminuição do tempo médio até um sinal no caso de desvios pequenos a moderados nos coeficientes do modelo de regressão do processo de produção. Os gráficos propostos foram aplicados a um exemplo de um processo de fabricação de semicondutores. Além disso, uma análise de sensibilidade dos mesmos é feita em função de desvios de diferentes magnitudes nos parâmetros do processo, a saber, no intercepto e na inclinação, comparando-se o desempenho entre os gráficos desenvolvidos e também com o gráfico χ2 com parâmetros fixos. Os gráficos propostos nesta tese são adequados para vários tipos de aplicações. Neste trabalho também foi considerado características de qualidade as quais são representadas por um modelo de regressão não-linear. Para o modelo de regressão não-linear considerado, a proposta é utilizar um método que divide o perfil não-linear em partes lineares, mais especificamente, um algoritmo para este fim, proposto na literatura, foi utilizado. Desta forma, foi possível validar a técnica proposta, mostrando que a mesma é robusta no sentido que permite tipos diferentes de perfis não-lineares. Aproxima-se, portanto um perfil não-linear por perfis lineares por partes, o que proporciona o monitoramento de cada perfil linear por gráficos de controle, como os gráficos de controle desenvolvidos nesta tese. Ademais apresenta-se a metodologia de decompor um perfil não-linear em partes lineares de forma detalhada e completa, abrindo espaço para ampla utilização.
Resumo:
针对机器人系统维护特点,提出将故障预测与健康管理(PHM)技术应用到机器人系统的维护上。论述了PHM关键技术——故障预测技术的特点和研究内容,对故障预测技术进行分类和分析。最后提出了基于统计过程控制(SPC)进行故障预测的方法,描述了其控制图的原理和判断准则,并利用实际过程能力指数进行预测,阐述了进一步研究可能遇到的问题。
Resumo:
This study addresses the long-term stability of three trophic groupings in the Northeast Atlantic at regional scales. The most abundant taxa representing phytoplankton, herbivorous copepods, and carnivorous zooplankton were examined from the Continuous Plankton Recorder database. Multivariate control charts using a Bray–Curtis similarity metric were used to assess whether fluctuations within trophic groupings were within or beyond the expected variability. Two evaluation periods were examined: annual changes between 1960 and 1999 (2000–2009 baseline) and recent changes between 2000 and 2009 (1960–1999 baseline). The trends over time in abundance/biomass of trophic levels were region-specific, especially in carnivorous copepods, where abundance did not mirror trends in the overall study area. The stability of phytoplankton was within the expected limits, although not in 2008 and 2009. Higher trophic levels were less stable, perhaps reflecting the added complexity of interactions governing their abundance. In addition, some regions were consistently less stable than others. Correlations in stability between adjacent trophic levels were positive at large marine ecosystem scale but generally non-significant at regional scales. The study suggests that certain regions may be particularly vulnerable to periods of instability in community structure. The benefits of using the control chart method rather than other multivariate measures of plankton dynamics are discussed.
Resumo:
Systematic principal component analysis (PCA) methods are presented in this paper for reliable islanding detection for power systems with significant penetration of distributed generations (DGs), where synchrophasors recorded by Phasor Measurement Units (PMUs) are used for system monitoring. Existing islanding detection methods such as Rate-of-change-of frequency (ROCOF) and Vector Shift are fast for processing local information, however with the growth in installed capacity of DGs, they suffer from several drawbacks. Incumbent genset islanding detection cannot distinguish a system wide disturbance from an islanding event, leading to mal-operation. The problem is even more significant when the grid does not have sufficient inertia to limit frequency divergences in the system fault/stress due to the high penetration of DGs. To tackle such problems, this paper introduces PCA methods for islanding detection. Simple control chart is established for intuitive visualization of the transients. A Recursive PCA (RPCA) scheme is proposed as a reliable extension of the PCA method to reduce the false alarms for time-varying process. To further reduce the computational burden, the approximate linear dependence condition (ALDC) errors are calculated to update the associated PCA model. The proposed PCA and RPCA methods are verified by detecting abnormal transients occurring in the UK utility network.
Resumo:
This Master Thesis presents a case study on the use of Statistical Process Control (SPC) at the Núcleo de Pesquisas em Alimentos e Medicamentos (NUPLAM). The SPC basic tools have been applied in the process of the tuberculostáticos drugs encapsulation, primarily concerning the objective to choose, between two speeds, which one is the best one to perform the tuberculostatics encapsulation. Later on, with the company effectively operating, the SPC was applied intending to know the variability of the process and, through the tracking of the process itself, to arrive at an estimated limit for the control of future lots of tuberculostatics of equal dosage. As special causes were detected acting in the process, a cause-and-effect diagram was built in order to try to discover, in each factor that composes the productive process, the possible causes of variation of the capsules average weight. The hypotheses raised will be able to serve as a base for deepened the study to eliminate or reduce these interferences in the process. Also a study on the capacity of the process to attend the specifications was carried out, and this study has shown the process´s inaptitude to take care of them. However, on the side of NUPLAM exists a real yearning to implant the SPC and consequently to improve the existing quality already present on its medicines
Resumo:
This paper proposes a procedure to control on-line processes for attributes, using an Shewhart control chart with two control limits (warning limit and control limit) and will be based on a sequence of inspection (h). The inspection procedure is based on Taguchi et al. (1989), in which to inspect the item, if the number of non-conformities is higher than an upper control limit, the process needs to be stopped and some adjustment is required; and, if the last inspection h, from all items inspected present a number of non-conformities between the control limit and warning limit. The items inspected will suffer destructive inspection, being discarded after inspection. Properties of an ergodic Markov chain are used to get the expression of average cost per item and the aim was the determination of four optimized parameters: the sampling interval of the inspections (m); the constant W to draw the warning limit (W); the constant C to draw the control limit (C), where W £ C, and the length of sequence of inspections (h). Numerical examples illustrate the proposed procedure
Resumo:
This paper proposes a new control chart to monitor a process mean employing a combined npx-X control chart. Basically the procedure consists of splitting the sample of size n into two sub-samples n1 and n2 determined by an optimization search. The sampling occur in two-stages. In the first stage the units of the sub-sample n1 are evaluated by attributes and plotted in npx control chart. If this chart signs then units of second sub-sample are measured and the monitored statistic plotted in X control chart (second stage). If both control charts sign then the process is stopped for adjustment. The possibility of non-inspection in all n items may promote a reduction not only in the cost but also the time spent to examine the sampled items. Performances of the current proposal, individual X and npx control charts are compared. In this study the proposed procedure presents many competitive options for the X control chart for a sample size n and a shift from the target mean. The average time to sign (ATS) of the current proposal lower than the values calculated from an individual X control chart points out that the combined control chart is an efficient tool in monitoring process mean.
Resumo:
Statistical analysis of data is crucial in cephalometric investigations. There are certainly excellent examples of good statistical practice in the field, but some articles published worldwide have carried out inappropriate analyses. Objective: The purpose of this study was to show that when the double records of each patient are traced on the same occasion, a control chart for differences between readings needs to be drawn, and limits of agreement and coefficients of repeatability must be calculated. Material and methods: Data from a well-known paper in Orthodontics were used for showing common statistical practices in cephalometric investigations and for proposing a new technique of analysis. Results: A scatter plot of the two radiograph readings and the two model readings with the respective regression lines are shown. Also, a control chart for the mean of the differences between radiograph readings was obtained and a coefficient of repeatability was calculated. Conclusions: A standard error assuming that mean differences are zero, which is referred to in Orthodontics and Facial Orthopedics as the Dahlberg error, can be calculated only for estimating precision if accuracy is already proven. When double readings are collected, limits of agreement and coefficients of repeatability must be calculated. A graph with differences of readings should be presented and outliers discussed.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)