930 resultados para CONSTITUTIVE-EQUATIONS


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The friction of rocks in the laboratory is a function of time, velocity of sliding, and displacement. Although the processes responsible for these dependencies are unknown, constitutive equations have been developed that do a reasonable job of describing the laboratory behavior. These constitutive laws have been used to create a model of earthquakes at Parkfield, CA, by using boundary conditions appropriate for the section of the fault that slips in magnitude 6 earthquakes every 20-30 years. The behavior of this model prior to the earthquakes is investigated to determine whether or not the model earthquakes could be predicted in the real world by using realistic instruments and instrument locations. Premonitory slip does occur in the model, but it is relatively restricted in time and space and detecting it from the surface may be difficult. The magnitude of the strain rate at the earth's surface due to this accelerating slip seems lower than the detectability limit of instruments in the presence of earth noise. Although not specifically modeled, microseismicity related to the accelerating creep and to creep events in the model should be detectable. In fact the logarithm of the moment rate on the hypocentral cell of the fault due to slip increases linearly with minus the logarithm of the time to the earthquake. This could conceivably be used to determine when the earthquake was going to occur. An unresolved question is whether this pattern of accelerating slip could be recognized from the microseismicity, given the discrete nature of seismic events. Nevertheless, the model results suggest that the most likely solution to earthquake prediction is to look for a pattern of acceleration in microseismicity and thereby identify the microearthquakes as foreshocks.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To solve problems in polymer fluid dynamics, one needs the equation of continuity, motion, and energy. The last two equations contain the stress tensor and the heat-flux vector for the material. There are two ways to formulate the stress tensor: (1) one can write a continuum expression for the stress tensor in terms of kinematic tensors, or (2) one can select a molecular model that represents the polymer molecule, and then develop an expression for the stress tensor from kinetic theory. The advantage of the kinetic theory approach is that one gets information about the relation between the molecular structure of the polymers and the rheological properties. In this review, we restrict the discussion primarily to the simplest stress tensor expressions or “constitutive equations” containing from two to four adjustable parameters, although we do indicate how these formulations may be extended to give more complicated expressions. We also explore how these simplest expressions are recovered as special cases of a more general framework, the Oldroyd 8-constant model. The virtue of studying the simplest models is that we can discover some general notions as to which types of empiricisms or which types of molecular models seem to be worth investigating further. We also explore equivalences between continuum and molecular approaches. We restrict the discussion to several types of simple flows, such as shearing flows and extensional flows. These are the flows that are of greatest importance in industrial operations. Furthermore, if these simple flows cannot be well described by continuum or molecular models, then it is not necessary to lavish time and energy to apply them to more complex flow problems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The influence of three dimensional effects on isochromatic birefringence is evaluated for planar flows by means of numerical simulation. Two fluid models are investigated in channel and abrupt contraction geometries. In practice, the flows are confined by viewing windows, which alter the stresses along the optical path. The observed optical properties differ therefore from their counterpart in an ideal two-dimensional flow. To investigate the influence of these effects, the stress optical rule and the differential propagation Mueller matrix are used. The material parameters are selected so that a retardation of multiple orders is achieved, as is typical for highly birefringent melts. Errors due to three dimensional effects are mainly found on the symmetry plane, and increase significantly with the flow rate. Increasing the geometric aspect ratio improve the accuracy provided that the error on the retardation is less than one order. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Double Convected Pom-Pom model was recently introduced to circumvent some numerical and theological defects found in other formulations of the Pom-Pom concept. It is used here for the simulation of a benchmark problem: the flow in an abrupt planar contraction. The predictions are compared with birefringence measurements and show reasonable quantitative agreement with experimental data. A parametric study is also carried out with the aim of analysing the effect of the branching parameter on vortex dynamics and extrudate swell. The results show that the Double Convected Pom-Pom model (DCPP) model is able to discriminate between branched and linear macromolecular structures in accordance with experimental observations. In that respect, the role of the extensional properties in determining complex flow behaviour is stressed. Also, the ratio of the first normal stress difference to the shear stress appears to play a major role in die swell observation. For the time being, the role of the second normal stress difference appears to be less obvious to evaluate in this complex flow. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper reviews the recent developments in the mechanics of superplasticity and its applications in industrial practice. After introducing the phenomena of superplasticity, the basic experiments for determining material deformation behavior and related parameters, and constructing superplastic constitutive equations, are reviewed. Finite element related formulations and techniques for simulating superplastic forming are discussed, together with some practical applications. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The work describes the programme of activities relating to a mechanical study of the Conform extrusion process. The main objective was to provide a basic understanding of the mechanics of the Conform process with particular emphasis placed on modelling using experimental and theoretical considerations. The experimental equipment used includes a state of the art computer-aided data-logging system and high temperature loadcells (up to 260oC) manufactured from tungsten carbide. Full details of the experimental equipment is presented in sections 3 and 4. A theoretical model is given in Section 5. The model presented is based on the upper bound theorem using a variation of the existing extrusion theories combined with temperature changes in the feed metal across the deformation zone. In addition, constitutive equations used in the model have been generated from existing experimental data. Theoretical and experimental data are presented in tabular form in Section 6. The discussion of results includes a comprehensive graphical presentation of the experimental and theoretical data. The main findings are: (i) the establishment of stress/strain relationships and an energy balance in order to study the factors affecting redundant work, and hence a model suitable for design purposes; (ii) optimisation of the process, by determination of the extrusion pressure for the range of reduction and changes in the extrusion chamber geometry at lower wheel speeds; and (iii) an understanding of the control of the peak temperature reach during extrusion.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the bulge test, a sheet metal specimen is clamped over a circular hole in a die and formed into a bulge by the hydraulic pressure on one side of the specirnen. As the unsupported part of the specimen is deformed in this way, its area is increased, in other words, the material is generally stretched and its thickness generally decreased. The stresses causing this stretching action are the membrane stresses in the shell generated by the hydraulic pressure, in the same way as the rubber in a toy balloon is stretched by the membrane stresses caused by the air inside it. The bulge test is a widely used sheet metal test, to determine the "formability" of sheet materials. Research on this forming process (2)-(15)* has hitherto been almost exclusively confined to predicting the behaviour of the bulged specimen through the constitutive equations (stresses and strains in relation to displacements and shapes) and empirical work hardening characteristics of the material as determined in the tension test. In the present study the approach is reversed; the stresses and strains in the specimen are measured and determined from the geometry of the deformed shell. Thus, the bulge test can be used for determining the stress-strain relationship in the material under actual conditions in sheet metal forming processes. When sheet materials are formed by fluid pressure, the work-piece assumes an approximately spherical shape, The exact nature and magnitude of the deviation from the perfect sphere can be defined and measured by an index called prolateness. The distribution of prolateness throughout the workpiece at any particular stage of the forming process is of fundamental significance, because it determines the variation of the stress ratio on which the mode of deformation depends. It is found. that, before the process becomes unstable in sheet metal, the workpiece is exactly spherical only at the pole and at an annular ring. Between the pole and this annular ring the workpiece is more pointed than a sphere, and outside this ring, it is flatter than a sphere. In the forming of sheet materials, the stresses and hence the incremental strains, are closely related to the curvatures of the workpiece. This relationship between geometry and state of stress can be formulated quantitatively through prolateness. The determination of the magnitudes of prolateness, however, requires special techniques. The success of the experimental work is due to the technique of measuring the profile inclination of the meridional section very accurately. A travelling microscope, workshop protractor and surface plate are used for measurements of circumferential and meridional tangential strains. The curvatures can be calculated from geometry. If, however, the shape of the workpiece is expressed in terms of the current radial (r) and axial ( L) coordinates, it is very difficult to calculate the curvatures within an adequate degree of accuracy, owing to the double differentiation involved. In this project, a first differentiation is, in effect, by-passed by measuring the profile inclination directly and the second differentiation is performed in a round-about way, as explained in later chapters. The variations of the stresses in the workpiece thus observed have not, to the knowledge of the author, been reported experimentally. The static strength of shells to withstand fluid pressure and their buckling strength under concentrated loads, both depend on the distribution of the thickness. Thickness distribution can be controlled to a limited extent by changing the work hardening characteristics of the work material and by imposing constraints. A technique is provided in this thesis for determining accurately the stress distribution, on which the strains associated with thinning depend. Whether a problem of controlled thickness distribution is tackled by theory, or by experiments, or by both combined, the analysis in this thesis supplies the theoretical framework and some useful experimental techniques for the research applied to particular problems. The improvement of formability by allowing draw-in can also be analysed with the same theoretical and experimental techniques. Results on stress-strain relationships are usually represented by single stress-strain curves plotted either between one stress and one strain (as in the tension or compression tests) or between the effective stress and effective strain, as in tests on tubular specimens under combined tension, torsion and internal pressure. In this study, the triaxial stresses and strains are plotted simultaneously in triangular coordinates. Thus, both stress and strain are represented by vectors and the relationship between them by the relationship between two vector functions. From the results so obtained, conclusions are drawn on both the behaviour and the properties of the material in the bulge test. The stress ratios are generally equal to the strain-rate ratios (stress vectors collinear with incremental strain vectors) and the work-hardening characteristics, which apply only to the particular strain paths are deduced. Plastic instability of the material is generally considered to have been reached when the oil pressure has attained its maximum value so that further deformation occurs under a constant or lower pressure. It is found that the instability regime of deformation has already occurred long before the maximum pressure is attained. Thus, a new concept of instability is proposed, and for this criterion, instability can occur for any type of pressure growth curves.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 26A33, 33E12, 33C60, 44A10, 45K05, 74D05,

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To solve problems in polymer fluid dynamics, one needs the equation of continuity, motion, and energy. The last two equations contain the stress tensor and the heat-flux vector for the material. There are two ways to formulate the stress tensor: (1) one can write a continuum expression for the stress tensor in terms of kinematic tensors, or (2) one can select a molecular model that represents the polymer molecule, and then develop an expression for the stress tensor from kinetic theory. The advantage of the kinetic theory approach is that one gets information about the relation between the molecular structure of the polymers and the rheological properties. In this review, we restrict the discussion primarily to the simplest stress tensor expressions or “constitutive equations” containing from two to four adjustable parameters, although we do indicate how these formulations may be extended to give more complicated expressions. We also explore how these simplest expressions are recovered as special cases of a more general framework, the Oldroyd 8-constant model. The virtue of studying the simplest models is that we can discover some general notions as to which types of empiricisms or which types of molecular models seem to be worth investigating further. We also explore equivalences between continuum and molecular approaches. We restrict the discussion to several types of simple flows, such as shearing flows and extensional flows. These are the flows that are of greatest importance in industrial operations. Furthermore, if these simple flows cannot be well described by continuum or molecular models, then it is not necessary to lavish time and energy to apply them to more complex flow problems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of the present theory is to improve Hypoplasticity, especially in relation to reloading processes. This is done by means of two hypoplastic equations (a classical equation along with a new one containing a so-called mnemonic tensor), a cone in stress space and a criterion defining loading, unloading and reloading. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work deals with the development of a numerical technique for simulating three-dimensional viscoelastic free surface flows using the PTT (Phan-Thien-Tanner) nonlinear constitutive equation. In particular, we are interested in flows possessing moving free surfaces. The equations describing the numerical technique are solved by the finite difference method on a staggered grid. The fluid is modelled by a Marker-and-Cell type method and an accurate representation of the fluid surface is employed. The full free surface stress conditions are considered. The PTT equation is solved by a high order method, which requires the calculation of the extra-stress tensor on the mesh contours. To validate the numerical technique developed in this work flow predictions for fully developed pipe flow are compared with an analytic solution from the literature. Then, results of complex free surface flows using the FIT equation such as the transient extrudate swell problem and a jet flowing onto a rigid plate are presented. An investigation of the effects of the parameters epsilon and xi on the extrudate swell and jet buckling problems is reported. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An extension of the uniform invariance principle for ordinary differential equations with finite delay is developed. The uniform invariance principle allows the derivative of the auxiliary scalar function V to be positive in some bounded sets of the state space while the classical invariance principle assumes that. V <= 0. As a consequence, the uniform invariance principle can deal with a larger class of problems. The main difficulty to prove an invariance principle for functional differential equations is the fact that flows are defined on an infinite dimensional space and, in such spaces, bounded solutions may not be precompact. This difficulty is overcome by imposing the vector field taking bounded sets into bounded sets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we discuss the existence of mild, strict and classical solutions for a class of abstract integro-differential equations in Banach spaces. Some applications to ordinary and partial integro-differential equations are considered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we study the existence of global solutions for a class of abstract functional differential equation with nonlocal conditions. An application is considered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the existence of weighted S-asymptotically omega-periodic mild solutions for a class of abstract fractional differential equations of the form u' = partial derivative (alpha vertical bar 1)Au + f(t, u), 1 < alpha < 2, where A is a linear sectorial operator of negative type.