996 resultados para COMP


Relevância:

20.00% 20.00%

Publicador:

Resumo:

UANL

Relevância:

20.00% 20.00%

Publicador:

Resumo:

UANL

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Explains how this module is organised, and the motivation

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Resumen basado en el de la publicaci??n

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dominant-negative mutations in the homopentameric extracellular matrix glycoprotein cartilage oligomeric matrix protein (COMP) result in inappropriate intracellular retention of misfolded COMP in the rough endoplasmic reticulum of chondrocytes, causing chondrocyte cell death, which leads to two skeletal dysplasias: pseudoachondroplasia (PSACH) and multiple epiphyseal dysplasia (EDM1). COMP null mice show no adverse effects on normal bone development and growth, suggesting a possible therapy involving removal of COMP mRNA. The goal of this study was to assess the ability of a hammerhead ribozyme (Ribo56, designed against the D469del mutation) to reduce COMP mRNA expression. In COS7 cells transfected with plasmids that overexpress wild-type or mutant COMP mRNA and Ribo56, the ribozyme reduced overexpressed normal COMP mRNA by 46% and mutant COMP mRNA by 56% in a dose-dependent manner. Surprisingly, the use of recombinant adenoviruses to deliver wild-type or mutant COMP mRNA and Ribo56 simultaneously into COS7 cells proved problematic for the activity of the ribozyme to reduce COMP expression. However, in normal human costochondral cells (hCCCs) infected only with adenoviruses expressing Ribo56, expression of endogenous wild-type COMP mRNA was reduced in a dose-dependent manner by 50%. In chondrocytes that contain heterozygous COMP mutations (D469del, G427E and D511Y) that cause PSACH, Ribo56 was more effective at reducing COMP mRNA (up to 70%). These results indicate that Ribo56 is effective at reducing mutant and wild-type COMP levels in cells and suggests a possible mode of therapy to reduce the mutant protein load.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This dissertation describes the identification and characterization of human dermatan sulfate proteoglycan 3 (DSPG3) and the characterization of the transcriptional regulation of human cartilage oligomeric matrix protein (COMP) in cartilage, ligament, and tendon cells. DSPG3 and COMP are two extracellular matrix proteins. The function of these ECM proteins is unknown.^ DSPG3 was cloned, sequenced, and shown to be expressed in cartilage, ligament, and placenta. DSPG3 was mapped to human chromosome 12q21, and the genomic structure was identified. 1.6 kb of the promoter region has been sequenced, and several putative SOX9 sites were identified as well as 3 TATA sites. Furthermore, an evolutionary tree of the SLRP gene family, which includes DSPG3, is presented.^ The promoter region of COMP was cloned and sequenced. Several putative transcription factor binding sites were identified including multiple AP2 and SP1 sites. Three transcription start sites were found to be located directly downstream of one of the SP1 sites. In addition, the expression of COMP was demonstrated to be higher in tendon than in cartilage and ligament by both Northern and Western blot analysis, and several regions of the COMP promoter were shown to contain cell-specific regulatory elements. Analysis of the proximal 370bp region of the COMP promoter has also identified distinct patterns of nuclear protein binding for the three tissues, and two SP1 sites may play a role in the tissue-specific expression of COMP. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

von A. Dunajewsky

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trägerband: Ms. Barth. 28; Vorbesitzer: Bartholomaeusstift Frankfurt am Main

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fil: Molina, Mercedes. Universidad Nacional de Cuyo. Facultad de Ciencias Políticas y Sociales