914 resultados para COIL DIBLOCK COPOLYMERS
Resumo:
Poly(ethylene oxide) has been coupled to poly(3-hexylthiophene) using esterification to produce pure diblock copolymers, highly relevant for use in organic electronic devices. The new synthetic route described herein uses a metal-free coupling step, for the first time, to afford well-defined polymers in high yields following facile purification.
Resumo:
In this work, it was studied the behavior of the nonionic surfactant aqueous solutions, containing or not a hydrotropic agent, by resonance magnetic nuclear (NMR). We have studied monofunctional diblock copolymers of poly(propylene oxide-ethylene oxide) (R-PPO-PEO-OH, where R length is linear C4) as nonionic surfactant and sodium p-toluenesulfonate (NaPTS) as hydrotropic agent. The critical micelle concentration (CMC) of the aqueous copolymer solution was obtained from ¹H-NMR. The preliminary study of the interaction between the copolymer, under the unimer and micelle forms, and the hydrotrope, in aqueous solutions, was evaluated by ¹H-NMR and 13C-NMR.
Resumo:
Biotinylated and non-biotinylated copolymers of ethylene oxide (EO) and 2-(diethylamino)ethyl methacrylate (DEAEMA) were synthesized by the atom transfer radical polymerization technique (ATRP). The chemical compositions of the copolymers as determined by NMR are represented by PEO₁₁₃PDEAEMA₇₀ and biotin-PEO₁₀₄PDEAEMA₉₃ respectively. The aggregation behavior of these polymers in aqueous solutions at different pHs and ionic strengths was studied using a combination of potentiometric titration, dynamic light scattering (DLS), static light scattering (SLS), and transmission electron microscopy (TEM). Both PEO-b-PDEAEMA and biotin-PEO-b-PDEAEMA diblock copolymers form micelles at high pH with hydrodynamic radii (Rh) of about 19 and 23 nm, respectively. At low pH, the copolymers are dispersed as unimers in solution with Rh of about 6-7 nm. However, at a physiological salt concentration (cs) of about 0.16M NaCl and a pH of 7-8, the copolymers form large loosely packed Guassian chains, which were not present at the low cs of 0.001M NaCl. The critical micelle concentrations (CMC) and the cytotoxicity of the copolymers were investigated to determine a suitable polymer concentration range for future biological applications. Both PEO-b-PDEAEMA and biotin-PEO-b-PDEAEMA diblock copolymers possess identical CMC values of about 0.0023 mg/g, while the cytotoxicity test indicated that the copolymers are not toxic up to 0.05mg/g (> 83% cell survival at this concentration).
Resumo:
It is known that terraces at the air-polymer interface of lamella forming diblock copolymers do not make discontinuous jumps in height. Despite the underlying discretized structure, the height profiles are smoothly varying. The width of a transition region of a terrace edge in isolation is typically several hundreds of nanometres, resulting from a balance between surface tension, chain stretching penalties, and the enthalpy of mixing. What is less well known in these systems is what happens when two transition regions interact with one another. In this study, we investigate the dynamics of the interactions between copolymer lamellar edges. We find that the data can be well described by a model that assumes a repulsion between adjacent edges. While the model is simplistic, and does not include molecular level details, its agreement with the data suggest that some of the the underlying assumptions provide insight into the complex interplay between defects.
Resumo:
Melts of ABA triblock copolymer molecules with identical end blocks are examined using self-consistent field theory (SCFT). Phase diagrams are calculated and compared with those of homologous AB diblock copolymers formed by snipping the triblocks in half. This creates additional end segments which decreases the degree of segregation. Consequently, triblock melts remain ordered to higher temperatures than their diblock counterparts. We also find that middle-block domains are easier to stretch than end-block domains. As a result, domain spacings are slightly larger, the complex phase regions are shifted towards smaller A-segment compositions, and the perforated-lamellar phase becomes more metastable in triblock melts as compared to diblock melts. Although triblock and diblock melts exhibit very similar phase behavior, their mechanical properties can differ substantially due to triblock copolymers that bridge between otherwise disconnected A domains. We evaluate the bridging fraction for lamellar, cylindrical, and spherical morphologies to be about 40%–45%, 60%–65%, and 75%–80%, respectively. These fractions only depend weakly on the degree of segregation and the copolymer composition.
Resumo:
The molecular architecture of azopolymers may be controlled via chemical synthesis and with selection of a suitable film-forming method, which is important for improving their properties for practical uses. Here we address the main challenge of combining the photoinduced birefringence features of azopolymers with the higher thermal and mechanical stabilities of poly(methyl methacrylate) (PMMA) using Atom Transfer Radical Polymerization (ATRP) to synthesize diblock- and triblock-copolymers of an azomonomer and the monomer methyl methacrylate. Langmuir-Blodgett (LB) films made with the copolymers mixed with cadmium stearate displayed essentially the same optically induced birefringence characteristics, in terms of maximum and residual birefringence and time for writing, as the mixed LB films with the homopolymer poly[4-(N-ethyl-N-(2-methacryloxyethyl))amino-2`-chloro-4`-nitroazobenzene] (HPDR13), also synthesized via ATRP. In fact, the controlled architecture of HPDR13 chains led to Langmuir films that could be more closely packed and reach higher collapse pressures than the corresponding films obtained with HPDR13-conv synthesized via conventional radicalar polymerization. This allowed LB films to be fabricated from neat HPDR13, which was not possible with HPDR13-conv. The enhanced organization in the LB films produced with controlled azopolymer chains, however, led to a smaller free volume available for isomerization of the azochromophores, thus yielding a lower photoinduced birefringence than in the HPDR13-conv films. The combination of ATRP synthesis and LB technology is then promising to obtain optical storage in films with improved thermal and mechanical processabilities, though a further degree of control must be sought to exploit film organization while maintaining the necessary free volume in the films. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
This study investigates the structures of layers of amphiphilic diblock copolymers of poly(t-butyl styrene)-poly- (styrene sulfonate) (PtBS-PSS) adsorbed on both the bare mica surface (hydrophilic) and an octadecyltriethoxysilane (OTE)-modified mica surface (hydrophobic). When the surface is rendered hydrophobic, the nonsoluble block exhibits stronger interaction with the surface and higher adsorbed masses are achieved. Interaction forces between two such adsorbed layers on both substrates were measured using the surface forces apparatus. The effect of salt concentration (Cs) and molecular weight (N) on the height of the self-assembled layers (L0) was examined in each case. The resulting scaling relationship is in good agreement with predictions of the brush model, L0 ∞ N1.0 in the low-salt limit and L0N-1 ∞ (Cs/σ)-0.32 in the salted regime, when adsorption takes place onto the hydrophobized mica surface. For adsorption on the bare mica surface, L0N-0.7 ∞ Cs -0.17 agrees with the scaling prediction of the sparse tethering model. The results suggest that, on the hydrophilic bare mica surface, the adsorbed amount is not high enough to form a brush structure and only very little intermolecular stretching of the tethered chains occurs; in contrast, the presence of the hydrophobic OTE layer increases the tethering density such that the polyelectrolyte chains adopt a brush conformation.
Resumo:
Living anionic polymerization of 4-vinylbenzocylobutene was performed in benzene at room temperature using sec-butyllithium as the initiator. Results of the kinetic studies indicated the termination- and transfer-free nature of the polymerization. Homopolymers with predictable molecular weights and narrow molecular weight distributions were produced, excluding the interference of the cyclobutene rings during initiation and propagation. Thermogravimetric analysis of poly(4-vinylbenzocyclobutene) in air showed a small weight gain at ~200 °C, a rapid decomposition at ~455 °C, and a gradual decomposition at ~566 °C. This behavior was attributed to the formation of radicals from the pendent benzocyclobutene functionality through o-quinodimethane intermediates and simultaneous decomposition/cross-linking reactions at high temperature. The living nature of the polymerization was also examined via sequential copolymerization with butadiene to form diblock copolymers.
Resumo:
Copolymers of norbornene (NBE) with norbomadiene (NBD) were obtained via ROMP with [RuCl2(PPh3)(2)(L)] type complexes as initiators (1 for L = piperidine and 2 for L = 3,5-Me(2)piperidine). The reactions were performed using a fixed quantity of NBE (5000 equivalents/[Ru]) for different concentrations of NBD (500, 1000, 1500 and 2000 equivalents/ [Ru]) in CHCl3, initiated with ethyl diazoacetate at room temperature. The presence of NBD in the NBE chains was characterized by H-1 and C-13 NMR. Whereas the copolymer microstructure was influenced neither by the NBD quantity nor by the initiator type, the N-n and PDI values were improved when increasing the NBD quantity in the medium. When raising the NBD amount, DMA results indicated increased cross-linking with increasing T-g and E ' storage modulus, as well as the fact that SEM micrographs indicated decreased pore sizes in the porous isolated copolymers. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Nanopartikel durch Strukturfixierung mizellarer Assoziate aus amphiphilen, endgruppenfunktionalisierten Diblockcopolymeren Zwei unterschiedliche Diblockcopolymersysteme mit Molmassen unterhalb von Mw = 10 000 g/mol wurden über anionische Polymerisation synthetisiert. Ein hetero-telecheles a,w-Poly(dimethylsiloxan)-b-Poly(ethylenoxid) (PDMS-PEO) Diblockcopolymer wurde mit einer Methacrylatendgruppe am PDMS und entweder einer Benzyl-, Hydroxy- oder Carboxylatendgruppe am PEO funktionalisiert. Ein Poly(butadien)-b-Poly(ethylenoxid) (PB-PEO) Diblockcopolymer wurde am PEO ebenfalls entweder mit einer Benzyl-, Hydroxy- oder Carboxylatendgruppe funktionalisiert. In selektiven Lösungsmitteln wie Wasser oder Methanol bilden beide Diblockcopolymersysteme supramolekulare Strukturen mit sphärischer, zylindrischer oder toroider Geometrie aus, die mit statischer und dynamischer Lichtstreuung in Lösung und mit Rasterkraftmikroskopie (AFM) und Transmissionselektronenmikroskopie (TEM) auf der Oberfläche untersucht wurden. Durch Zusatz eines Vernetzers und Initiators wurden die selbstassoziierenden Mizellen des PDMS-PEO Diblockcopolymers permanent durch radikalische Polymerisation mit UV-Licht fixiert. Mizellen des PB-PEO Diblockcopolymers wurden über Bestrahlung mit gamma-Strahlen permanent fixiert. Die Untersuchung der resultierenden Nanopartikel beider Diblockcopolymersysteme mit AFM und TEM zeigte, daß diese sogar in nicht selektiven Lösungsmitteln wie Tetrahydrofuran formstabil bleiben.
Resumo:
Zusammenfassung der DoktorarbeitDie MALDI-TOF-Massenspektrometrie (Matrix Assisted Laser Desorption and IonisationâTime Of Flight) ist in der Lage, Moleküle mit einem Molekulargewicht bis zu mehreren Hunderttausend Da intakt in die Gasphase zu überführen. Dabei wird die Fragmentierung des Analyten stark eingeschränkt bzw. gänzlich vermieden. Diese Methode findet daher zunehmend Verwendung für die Charakterisierung von Biopolymeren und synthetischen Polymeren. Ziel dieser Arbeit war, die MALDI-TOF-Massenspektrometrie zur Charakterisierung von Makromolekülen einzusetzen, bei denen die konventionellen polymeranalytischen Methoden nur unzureichende Informationen oder gar falsche bzw. gar keine Ergebnisse liefern. Mittels einer methodischen Entwicklung der MALDI-TOF-Massenspektrometrie gelang es, die bisherigen Grenzen der Methode zu erweitern und neue Anwendungsbereiche der Polymeranalytik aufzuzeigen. Anhand der erzielten Ergebnisse wurden darüber hinaus neue Erklärungsansätze formuliert, die zu einem besseren Verständnis des noch immer ungeklärten MALDI-Prozesses beitragen können. Besonders vielversprechend sind zum einen die Ergebnisse der Fragmentionenanalyse synthetischer Polymere und zum anderen die Charakterisierung von unlöslichen PAHs (Polycyclic Aromatic Hydrocarbons). Die Möglichkeiten und Aussagekraft der Fragmentionenanalyse wurde an synthetischen Polymeren getestet. Mit Hilfe dieser neuen Technik konnte die komplizierte Endgruppenverteilung einer Polycarbonat-Probe sowie die Zusammensetzung eines Poly-para-phenylenethynylen-b-Polyethylenoxid-Diblock-Copolymers eindeutig bestimmen werden, während die konventionellen MALDI-Massenspektren nur über einen wesentlich geringeren Informationsgehalt verfügten. Auf dem Gebiet der Analytik von unlöslichen PAHs wurde mit der Entwicklung einer neuen MALDI-Probenvorbereitung eine Methode gefunden, die über die PAH Analytik hinaus von großem Nutzen ist. Diese erstmalig angewendete Probenvorbereitung unterscheidet sich von den üblichen MALDI-Probenpräparationen, indem sie auf die Beteiligung eines Lösungsmittels vollkommen verzichtet. Damit konnte speziell ein unlöslicher, zuvor nicht nachweisbarer PAH von ca. 2700 Da mit MALDI eindeutig charakterisiert werden.
Resumo:
In der vorliegenden Arbeit erfolgten Oberflächenmodifizierungen durch Polymere nach zwei Ansätzen. Dies war zum einen ein Ansatz, bei dem die Oberflächen mit Diblockcopolymeren versehen wurden. Diese bestanden aus einem Ankerblock, der starke Wechselwirkungen mit der Oberfläche zeigt, und einem Bojenblock, der gezielte Eigenschaften trägt. Zum anderen erfolgten Modifizierungen durch auf Plasmaschichten verankerte Homopolymere. Beide Ansätze erfolgten auf zwei Substraten von unterschiedlichen Eigenschaften. Diese waren das Siliciumoxid, für das Modifizierungen durch radikalische in-situ Oberflächenpolymerisation, und das Poly(ethylen-stat-norbornen), für das Modifizierungen durch ex-situ dargestellte Polymere gewählt wurden. Beim ersten Ansatz zur Modifizierung der Siliciumoxidoberfläche ermöglichte ein adsorbierter Poly(e-caprolacton)-Makroinitiator die Oberflächenpolymerisation hin zu oberflächenverankertem Poly(e-caprolacton)-block-poly(alkyl(meth)acrylat). Beim zweiten Ansatz erfolgte die Abscheidung von plasmapolymerisiertem Allylamin, die Immobilisierung des Azoinitiators 4,4-Azobis(4-cyanopentansäurechlorid) und die nachfolgende Oberflächenpolymerisation von Methylmethacrylat oder Styrol. Beim ersten Modifizierungsansatz der Poly(ethylen-stat-norbornen)-Oberfläche sollte diese mit thermisch interdiffundierten Poly(ethylen-alt-propylen)-block-poly(dimethylsiloxan) versehen werden. Trotz erfolgreicher Synthese wurde gezeigt, daß keine Interdiffusion stattfand. Im zweiten Modifizierungsansatz wurde die Oberfläche mit aus einem Hexamethyldisiloxan/Sauerstoff-Plasma abgeschiedenem reinem Siliciumoxid beschichtet, woran sich die Adsorption von Poly(dimethylsiloxan) anschloß. Damit konnten die hohen Haftreibungskräfte gegenüber Halogenbutylgummi erfolgreich beseitigt werden.
Resumo:
In hybrid organic solar cells a blocking layer between transparent electrode and nanocrystalline titania particles is essential to prevent short-circuiting and current loss through recombination at the electrode interface. Here the preparation of a uniform hybrid blocking layer which is composed of conducting titania nanoparticles embedded in an insulating polymer derived ceramic is presented. This blocking layer is prepared by sol-gel chemistry where an amphiphilic block copolymer is used as a templating agent. A novel poly(dimethylsiloxane) containing amphiphilic block copolymer poly(ethyleneglycol)methylethermethacrylate-block-poly(dimethylsiloxane)-block-poly(ethyleneglycol)methylethermethacrylate has been synthesized to act as the templating agent. Plasma treatment uncovered titania surface from any polymer. Annealing at 450°C under nitrogen resulted in anatase titania with polymer derived silicon oxycarbide ceramic. Electrical characterization by conductive scanning probe microscopy experiments revealed a percolating titania network separated by an insulating ceramic matrix. Scanning Kelvin probe force microscopy showed predominant presence of titania particles on the surface creating a large surface area for dye absorption. The uniformity of the percolating structures was proven by microbeam grazing incidence small angle x-ray scattering. First applications in hybrid organic solar cells in comparison with conventional titanium dioxide blocking layer containing devices revealed 15 fold increases in corresponding efficiencies. Poly(dimethylsiloxane)-block-poly(ethyleneglycol)methylethermethacrylate and poly(ethyleneoxide)-poly(dimethylsiloxane)methylmethacrylate diblock copolymers were also synthesized. Their titania nanocomposite films were compared with the integrated blocking layer. Liner poly(ethyleneoxide) containing diblock copolymer resulted in highly ordered foam like structures. The effect of heating temperature rise to 600°C and 1000°C on titania morphology was investigated by scanning electron and force microscopy and x-ray scattering. Sol-gel contents, hydrochloric acid, titania precursor and amphiphilic triblock copolymer were altered to see their effect on titania morphology. Increase in block copolymer content resulted in titania particles of diameter 15-20 nm.
Resumo:
Chapter 1 of this thesis comprises a review of polyether polyamines, i.e., combinations of polyether scaffolds with polymers bearing multiple amino moieties. Focus is laid on controlled or living polymerization methods. Furthermore, fields in which the combination of cationic, complexing, and pH-sensitive properties of the polyamines and biocompatibility and water-solubility of polyethers promise enormous potential are presented. Applications include stimuli-responsive polymers with a lower critical solution temperature (LCST) and/or the ability to gel, preparation of shell cross-linked (SCL) micelles, gene transfection, and surface functionalization.rnIn Chapter 2, multiaminofunctional polyethers relying on the class of glycidyl amine comonomers for anionic ring-opening polymerization (AROP) are presented. In Chapter 2.1, N,N-diethyl glycidyl amine (DEGA) is introduced for copolymerization with ethylene oxide (EO). Copolymer microstructure is assessed using online 1H NMR kinetics, 13C NMR triad sequence analysis, and differential scanning calorimetry (DSC). The concurrent copolymerization of EO and DEGA is found to result in macromolecules with a gradient structure. The LCSTs of the resulting copolymers can be tailored by adjusting DEGA fraction or pH value of the environment. Quaternization of the amino moieties by methylation results in polyelectrolytes. Block copolymers are used for PEGylated gold nanoparticle formation. Chapter 2.2 deals with a glycidyl amine monomer with a removable protecting group at the amino moiety, for liberation of primary amines at the polyether backbone, which is N,N-diallyl glycidyl amine (DAGA). Its allyl groups are able to withstand the harsh basic conditions of AROP, but can be cleaved homogeneously after polymerization. Gradient as well as block copolymers poly(ethylene glycol)-PDAGA (PEG-PDAGA) are obtained. They are analyzed regarding their microstructure, LCST behavior, and cleavage of the protecting groups. rnChapter 3 describes applications of multi(amino)functional polyethers for functionalization of inorganic surfaces. In Chapter 3.1, they are combined with an acetal-protected catechol initiator, leading to well-defined PEG and heteromultifunctional PEG analogues. After deprotection, multifunctional PEG ligands capable of attaching to a variety of metal oxide surfaces are obtained. In a cooperative project with the Department of Inorganic and Analytical Chemistry, JGU Mainz, their potential is demonstrated on MnO nanoparticles, which are promising candidates as T1 contrast agents in magnetic resonance imaging. The MnO nanoparticles are solubilized in aqueous solution upon ligand exchange. In Chapter 3.2, a concept for passivation and functionalization of glass surfaces towards gold nanorods is developed. Quaternized mPEG-b-PqDEGA diblock copolymers are attached to negatively charged glass surfaces via the cationic PqDEGA blocks. The PEG blocks are able to suppress gold nanorod adsorption on the glass in the flow cell, analyzed by dark field microscopy.rnChapter 4 highlights a straightforward approach to poly(ethylene glycol) macrocycles. Starting from commercially available bishydroxy-PEG, cyclic polymers are available by perallylation and ring-closing metathesis in presence of Grubbs’ catalyst. Purification of cyclic PEG is carried out using α-cyclodextrin. This cyclic sugar derivative forms inclusion complexes with remaining unreacted linear PEG in aqueous solution. Simple filtration leads to pure macrocycles, as evidenced by SEC and MALDI-ToF mass spectrometry. Cyclic polymers from biocompatible precursors are interesting materials regarding their increased blood circulation time compared to their linear counterparts.rnIn the Appendix, A.1, a study of the temperature-dependent water-solubility of polyether copolymers is presented. Macroscopic cloud points, determined by turbidimetry, are compared with microscopic aggregation phenomena, monitored by continuous wave electron paramagnetic resonance (CW EPR) spectroscopy in presence of the amphiphilic spin probe and model drug (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO). These thermoresponsive polymers are promising candidates for molecular transport applications. The same techniques are applied in Chapter A.2 to explore the pH-dependence of the cloud points of PEG-PDEGA copolymers in further detail. It is shown that the introduction of amino moieties at the PEG backbone allows for precise manipulation of complex phase transition modes. In Chapter A.3, multi-hydroxyfunctional polysilanes are presented. They are obtained via copolymerization of the acetal-protected dichloro(isopropylidene glyceryl propyl ether)methylsilane monomer. The hydroxyl groups are liberated through acidic work-up, yielding versatile access to new multifunctional polysilanes.
Resumo:
Ziel der vorliegenden Dissertation war es, Einblicke in das Kristallisationsverhalten weicher Materie („soft matter“), wie verschiedener Polymere oder Wasser, unter räumlicher Einschränkung („confinement“) zu erlangen. Dabei sollte untersucht werden, wie, weshalb und wann die Kristallisation in nanoporösen Strukturen eintritt. Desweiteren ist Kristallisation weicher Materie in nanoporösen Strukturen nicht nur aus Aspekten der Grundlagenforschung von großem Interesse, sondern es ergeben sich zahlreiche praktische Anwendungen. Durch die gezielte Steuerung der Kristallinität von Polymeren könnten somit Materialien mit verschiendenen mechanischen und optischen Eigenschaften erhalten werden. Desweiteren wurde auch räumlich eingeschränktes Wasser untersucht. Dieses spielt eine wichtige Rolle in der Molekularbiologie, z.B. für das globuläre Protein, und als Wolkenkondensationskeime in der Atmosphärenchemie und Physik. Auch im interstellaren Raum ist eingeschränktes Wasser in Form von Eispartikeln anzutreffen. Die Kristallisation von eingeschränktem Wasser zu verstehen und zu beeinflussen ist letztlich auch für die Haltbarkeit von Baumaterialien wie etwa Zement von großem Interesse.rnUm dies zu untersuchen wird Wasser in der Regel stark abgekühlt und das Kristallisationsverhalten in Abhängigkeit des Volumens untersucht. Dabei wurde beobachtet, dass Mikro- bzw. Nanometer große Volumina erst ab -38 °C bzw. -70 °C kristallisieren. Wasser unterliegt dabei in der Regel dem Prozess der homogenen Nukleation. In der Regel gefriert Wasser aber bei höheren Temperaturen, da durch Verunreinigungen eine vorzeitige, heterogene Nukleation eintritt.rnDie vorliegende Arbeit untersucht die sachdienlichen Phasendiagramme von kristallisierbaren Polymeren und Wasser unter räumlich eingeschränkten Bedingungen. Selbst ausgerichtetes Aluminiumoxid (AAO) mit Porengrößen im Bereich von 25 bis 400 nm wurden als räumliche Einschränkung sowohl für Polymere als auch für Wasser gewählt. Die AAO Nanoporen sind zylindrisch und parallel ausgerichtet. Außerdem besitzen sie eine gleichmäßige Porenlänge und einen gleichmäßigen Durchmesser. Daher eignen sie sich als Modelsystem um Kristallisationsprozesse unter wohldefinierter räumlicher Einschränkung zu untersuchen.rnEs wurden verschiedene halbkristalline Polymere verwendet, darunter Poly(ethylenoxid), Poly(ɛ-Caprolacton) und Diblockcopolymere aus PEO-b-PCL. Der Einfluss der Porengröße auf die Nukleation wurde aus verschiedenen Gesichtspunkten untersucht: (i) Einfluss auf den Nukleationmechanismus (heterogene gegenüber homogener Nukleation), (ii) Kristallorientierung und Kristallinitätsgrad und (iii) Zusammenhang zwischen Kristallisationstemperatur bei homogener Kristallisation und Glasübergangstemperatur.rnEs konnte gezeigt werden, dass die Kristallisation von Polymeren in Bulk durch heterogene Nukleation induziert wird und das die Kristallisation in kleinen Poren hauptsächlich über homogene Nukleation mit reduzierter und einstellbarer Kristallinität verläuft und eine hohe Kristallorientierung aufweist. Durch die AAOs konnte außerdem die kritische Keimgröße für die Kristallisation der Polymere abgeschätzt werden. Schließlich wurde der Einfluss der Polydispersität, von Oligomeren und anderen Zusatzstoffen auf den Nukleationsmechanismus untersucht.rn4rnDie Nukleation von Eis wurde in den selben AAOs untersucht und ein direkter Zusammenhang zwischen dem Nukleationstyp (heterogen bzw. homogen) und der gebildeten Eisphase konnte beobachtet werden. In größeren Poren verlief die Nukleation heterogen, wohingegen sie in kleineren Poren homogen verlief. Außerdem wurde eine Phasenumwandlung des Eises beobachtet. In den größeren Poren wurde hexagonales Eis nachgewiesen und unter einer Porengröße von 35 nm trat hauptsächlich kubisches Eis auf. Nennenswerter Weise handelte es sich bei dem kubischem Eis nicht um eine metastabile sondern eine stabile Phase. Abschließend wird ein Phasendiagramm für räumlich eingeschränktes Wasser vorgeschlagen. Dieses Phasendiagramm kann für technische Anwendungen von Bedeutung sein, so z.B. für Baumaterial wie Zement. Als weiteres Beispiel könnten AAOs, die die heterogene Nukleation unterdrücken (Porendurchmesser ≤ 35 nm) als Filter für Reinstwasser zum Einsatz kommen.rnNun zur Anfangs gestellten Frage: Wie unterschiedlich sind Wasser und Polymerkristallisation voneinander unter räumlicher Einschränkung? Durch Vergleich der beiden Phasendiagramme kommen wir zu dem Schluss, dass beide nicht fundamental verschieden sind. Dies ist zunächst verwunderlich, da Wasser ein kleines Molekül ist und wesentlich kleiner als die kleinste Porengröße ist. Wasser verfügt allerdings über starke Wasserstoffbrückenbindungen und verhält sich daher wie ein Polymer. Daher auch der Name „Polywasser“.