998 resultados para COAL


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Samples from the Callide Coal Measures, Queensland, Australia, containing the minor maceral, micrinite, have been studied using optical and electron-optical techniques to determine the precise compositional and structural nature of micrinite when in association with vitrinite macerals. Emphasis has been placed on direct spatial correlation of optical and electron-optical data due to the fine grain size (<1μm) of micrinite and its relatively low abundance compared with other macerals in the Callide Basin coals. Precise elemental, morphological and structural data, including electron diffraction, provides unambiguous evidence for the presence of kaolinite in the component known as micrinite. Indeed, micrinite consists predominantly of fine-grained kaolinite (>90 per cent of the component) and, as such, should not be considered a maceral.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thermal decomposition and dehydroxylation process of coal-bearing strata kaolinite–potassium acetate intercalation complex (CSKK) has been studied using X-ray diffraction (XRD), infrared spectroscopy (IR), thermal analysis, mass spectrometric analysis and infrared emission spectroscopy. The XRD results showed that the potassium acetate (KAc) have been successfully intercalated into coal-bearing strata kaolinite with an obvious basal distance increase of the first basal peak, and the positive correlation was found between the concentration of intercalation regent KAc and the degree of intercalation. As the temperature of the system is raised, the formation of KHCO3, KCO3 and KAlSiO4, which is derived from the thermal decomposition or phase transition of CSKK, is observed in sequence. The IR results showed that new bands appeared, the position and intensities shift can also be found when the concentration of intercalation agent is raised. The thermal analysis and mass spectrometric analysis results revealed that CSKK is stable below 300 °C, and the thermal decomposition products (H2O and CO2) were further proved by the mass spectrometric analysis. A comparison of thermal analysis results of original coal-bearing strata kaolinite and its intercalation complex gives new discovery that not only a new mass loss peak is observed at 285 °C, but also the temperature of dehydroxylation and dehydration of coal bearing strata kaolinite is decreased about 100 °C. This is explained on the basis of the interlayer space of the kaolinite increased obviously after being intercalated by KAc, which led to the interlayer hydrogen bonds weakened, enables the dehydroxylation from kaolinite surface more easily. Furthermore, the possible structural model for CSKK has been proposed, with further analysis required in order to prove the most possible structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

On 1 July 2012, the carbon pricing mechanism commenced in Australia with the aim of reducing emissions and encouraging investment in clean energy. A substantial proportion of Australia’s emissions are attributable to the coal-fired electricity generation sector. This article examines whether the carbon pricing mechanism will effectively facilitate emissions reduction from the coal-fired electricity sector. Aspects analysed include the legislative constraints placed on the carbon price, the carbon pollution cap and provisions specific to the coal-fired electricity sector, such as transitional assistance. It is concluded that, in practice, the carbon pricing mechanism may not be sufficient in itself to achieve significant reduction in emissions from coal-fired electricity generation or significant investment in clean energy, and that a suite of additional regulatory measures, such as the federal Renewable Energy Target, should operate in conjunction with the mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thermal decomposition of the coal-derived pyrite was studied using thermogravimetry combining with Fourier-transform infrared spectroscopy (TG-FTIR) techniques to gain knowledge on the SO2 gas evolution process and formation mechanism during the thermal decomposition of the coal-derived pyrite. The results showed that the thermal decomposition of the coal-derived pyrite which started at about 400 ◦C was complete at 600 ◦C; the gas evolved can be established by combining the DTG peak, the Gram–Schmidt curve and in situ FTIR spectroscopic evolved gas analysis. It can be observed from the spectra that the pyrolysis products for the sample mainly vary in quantity, but not in species. It was proposed that the oxidation of the coal-derived pyrite started at about 400 ◦C and that pyrrhotite and hematite were formed as primary products. The SO2 released by the thermal decomposition of the coal-derived pyrite mainly occurred in the first pyrolysis stage between 410 and 470 ◦C with the maximum rate at 444 ◦C. Furthermore, the SO2 gas evolution and formation mechanism during the thermal decomposition of the coal-derived pyrite has been proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A wet scrubber is a device used in underground coal mines for the exhaust treatment system of various internal combustion engines (generally diesel) primarily as a spark arrestor with a secondary function to remove pollutants from the exhaust gas. A pool of scrubbing liquid (generally water based) is used in conjunction with a Diesel Particulate Filter (DPF). Scrubbers are widely used in underground applications of diesel engines as their exhaust contains high concentration of harmful diesel particulate matter (DPM) and other pollutant gases. Currently the DPFs have to be replaced frequently because moisture output from the wet scrubber blocks the filter media and causes reduced capacity. This paper presents experimental and theoretical studies on the heat and mass transfer mechanisms of the exhaust flow both under and above the water surface, aiming at finding the cause and effects of the moisture reaching the filters and employing a solution to reduce the humidity and DPM output, and to prolong the change-out period of the DPF. By assuming a steady flow condition, heat transfer from the inlet exhaust gas balances energy required for the water evaporation. Hence the exit humidity will decrease with the increase of exit temperature. Experiments on a real scrubber are underway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report discusses the geologic framework and petroleum geology used to assess undiscovered petroleum resources in the Bohaiwan basin province for the 2000 World Energy Assessment Project of the U.S. Geological Survey. The Bohaiwan basin in northeastern China is the largest petroleum-producing region in China. Two total petroleum systems have been identified in the basin. The first, the Shahejie–Shahejie/Guantao/Wumishan Total Petroleum System, involves oil and gas generated from mature pods of lacustrine source rock that are associated with six major rift-controlled subbasins. Two assessment units are defined in this total petroleum system: (1) a Tertiary lacustrine assessment unit consisting of sandstone reservoirs interbedded with lacustrine shale source rocks, and (2) a pre-Tertiary buried hills assessment unit consisting of carbonate reservoirs that are overlain unconformably by Tertiary lacustrine shale source rocks. The second total petroleum system identified in the Bohaiwan basin is the Carboniferous/Permian Coal–Paleozoic Total Petroleum System, a hypothetical total petroleum system involving natural gas generated from multiple pods of thermally mature coal beds. Low-permeability Permian sandstones and possibly Carboniferous coal beds are the reservoir rocks. Most of the natural gas is inferred to be trapped in continuous accumulations near the center of the subbasins. This total petroleum system is largely unexplored and has good potential for undiscovered gas accumulations. One assessment unit, coal-sourced gas, is defined in this total petroleum system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A value-shift began to influence global political thinking in the late 20th century, characterised by recognition of the need for environmentally, socially and culturally sustainable resource development. This shift entailed a move away from thinking of ‘nature’ and ‘culture’ as separate entities – the former existing to serve the latter – toward the possibility of embracing the intrinsic worth of the nonhuman world. Cultural landscape theory recognises ‘nature’ as at once both ‘natural’, and a ‘cultural’ construct. As such, it may offer a framework through which to progress in the quest for ‘sustainable development’. This study makes a contribution to this quest by asking whether contemporary developments in cultural landscape theory can contribute to rehabilitation strategies for Australian open-cut coal mining landscapes. The answer is ‘yes’. To answer the research question, a flexible, ‘emergent’ methodological approach has been used, resulting in the following outcomes. A thematic historical overview of landscape values and resource development in Australia post-1788, and a review of cultural landscape theory literature, contribute to the formation of a new theoretical framework: Reconnecting the Interrupted Landscape. This framework establishes a positive answer to the research question. It also suggests a method of application within the Australian open-cut coal mining landscape, a highly visible exemplar of the resource development landscape. This method is speculatively tested against the rehabilitation strategy of an operating open-cut coal mine, concluding with positive recommendations to the industry, and to government.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The coal industry in Queensland operates in a very complex regulatory environment with a matrix of Federal and State laws covering the environment, health and safety, taxation and royalties, tenure, and development approvals. The Queensland Government in 2012 recognised the validity of certain industry concerns and passed two Acts being the Environmental Protection (Greentape Reduction) Amendment Act 2012 (the Greentape Act) and the Mines Legislation (Streamlining) Amendment Act 2012 (the Streamlining Act). Other changes are foreshadowed in relation to overlapping tenure and in the development of common resources legislation. Accordingly there is a great level of activity and change that has occurred or which is on the horizon. This article focuses upon these regulatory changes and foreshadows other areas requiring consideration. It commences with a consideration of the changes that have already occurred, examines those regulatory amendments that are on the drawing board and concludes with suggestions as to further interventions and amendments that have the potential to enhance the efficiency and effectiveness of the legislative framework in which coal mining is conducted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a demand-responsive decision support system is proposed by integrating the operations of coal shipment, coal stockpiles and coal railing within a whole system. A generic and flexible scheduling optimisation methodology is developed to identify, represent, model, solve and analyse the coal transport problem in a standard and convenient way. As a result, the integrated train-stockpile-ship timetable is created and optimised for improving overall efficiency of coal transport system. A comprehensive sensitivity analysis based on extensive computational experiments is conducted to validate the proposed methodology. The mathematical proposition and proof are concluded as technical and insightful advices for industry practice. The proposed methodology provides better decision making on how to assign rail rolling-stocks and upgrade infrastructure in order to significantly improve capacity utilisation with the best resource-effectiveness ratio. The proposed decision support system with train-stockpile-ship scheduling optimisation techniques is promising to be applied in railway or mining industry, especially as a useful quantitative decision making tool on how to use more current rolling-stocks or whether to buy additional rolling-stocks for mining transportation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Contrast-matching ultrasmall-angle neutron scattering (USANS) and small-angle neutron scattering (SANS) techniques were used for the first time to determine both the total pore volume and the fraction of the pore volume that is inaccessible to deuterated methane, CD4, in four bituminous coals in the range of pore sizes between ∼10 Å and ∼5 μm. Two samples originated from the Illinois Basin in the U.S.A., and the other two samples were commercial Australian bituminous coals from the Bowen Basin. The total and inaccessible porosity were determined in each coal using both Porod invariant and the polydisperse spherical particle (PDSP) model analysis of the scattering data acquired from coals both in vacuum and at the pressure of CD4, at which the scattering length density of the pore-saturating fluid is equal to that of the solid coal matrix (zero average contrast pressure). The total porosity of the coals studied ranged from 7 to 13%, and the volume of pores inaccessible to CD4 varied from ∼13 to ∼36% of the total pore volume. The volume fraction of inaccessible pores shows no correlation with the maceral composition; however, it increases with a decreasing total pore volume. In situ measurements of the structure of one coal saturated with CO2 and CD4 were conducted as a function of the pressure in the range of 1−400 bar. The neutron scattering intensity from small pores with radii less than 35 Å in this coal increased sharply immediately after the fluid injection for both gases, which demonstrates strong condensation and densification of the invading subcritical CO2 and supercritical methane in small pores.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fluid–solid interactions in natural and engineered porous solids underlie a variety of technological processes, including geological storage of anthropogenic greenhouse gases, enhanced coal bed methane recovery, membrane separation, and heterogeneous catalysis. The size, distribution and interconnectivity of pores, the chemical and physical properties of the solid and fluid phases collectively dictate how fluid molecules migrate into and through the micro- and meso-porous media, adsorb and ultimately react with the solid surfaces. Due to the high penetration power and relatively short wavelength of neutrons, smallangle neutron scattering (SANS) as well as ultra small-angle scattering (USANS) techniques are ideally suited for assessing the phase behavior of confined fluids under pressure as well as for evaluating the total porosity in engineered and natural porous systems including coal. Here we demonstrate that SANS and USANS can be also used for determining the fraction of the pore volume that is actually accessible to fluids as a function of pore sizes and study the fraction of inaccessible pores as a function of pore size in three coals from the Illinois Basin (USA) and Bowen Basin (Australia). Experiments were performed at CO2 and methane pressures up to 780 bar, including pressures corresponding to zero average contrast condition (ZAC), which is the pressure where no scattering from the accessible pores occurs. Scattering curves at the ZAC were compared with the scattering from same coals under vacuum and analysed using a newly developed approach that shows that the volume fraction of accessible pores in these coals varies between �90% in the macropore region to �30% in the mesopore region and the variation is distinctive for each of the examined coals. The developed methodology may be also applied for assessing the volume of accessible pores in other natural underground formations of interest for CO2 sequestration, such as saline aquifers as well as for estimating closed porosity in engineered porous solids of technological importance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Small-angle neutron scattering (SANS) and ultra-small-angle neutron scattering (USANS) measurements of the structure of two Australian bituminous coals (particle size of 1-0.5 mm) before, during, and after exposure to 155 bar of helium were made to identify any effects of pressure alone on the pore size distribution of coal and any irreversible effects upon exposure to high pressures of helium in the pore size range from 3 nm to 10 μm. No irreversible effects upon exposure were identified for any pore size. No effects of pressure on pore size distribution were observed, except for a small effect at a pore size of about 2 μm for one coal. This study provides a convenient baseline for SANS and USANS investigations on sorption of gases at elevated pressures on coals, by distinguishing between the effect of pressure alone on coal pore size distribution and against the effect of the gas to be investigated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have applied X-ray and neutron small-angle scattering techniques (SAXS, SANS, and USANS) to study the interaction between fluids and porous media in the particular case of subcritical CO2 sorption in coal. These techniques are demonstrated to give unique, pore-size-specific insights into the kinetics of CO2 sorption in a wide range of coal pores (nano to meso) and to provide data that may be used to determine the density of the sorbed CO2. We observed densification of the adsorbed CO2 by a factor up to five compared to the free fluid at the same (p, T) conditions. Our results indicate that details of CO2 sorption into coal pores differ greatly between different coals and depend on the amount of mineral matter dispersed in the coal matrix: a purely organic matrix absorbs more CO2 per unit volume than one containing mineral matter, but mineral matter markedly accelerates the sorption kinetics. Small pores are filled preferentially by the invading CO2 fluid and the apparent diffusion coefficients have been estimated to vary in the range from 5 × 10-7 cm2/min to more than 10-4 cm2/min, depending on the CO2 pressure and location on the sample.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports a study of ion exchange (IX) as an alternative CSG water treatment to the widely used reverse osmosis (RO) desalination process. An IX pilot plant facility has been constructed and operated using both synthetic and real CSG water samples. Application of appropriate synthetic resin technology has proved the effectiveness of IX processes.