995 resultados para CLAY MINERALS
Resumo:
An investigation of the quantitative composition of the coarse (> 40 µm) and clay (< 2 µm) fraction of HPC 532, DSDP Leg 75, in 1300 m water depth on the eastern Walvis Ridge off Southwest Africa yielded the following results: (1) The sediments reflect a complete Latest Miocene to Recent depositional history. Sedimentation rates vary between 2.3 and 7.8 cm/ka. (2) Preservation of calcium carbonate is subject to strong variations: short-term (< 100,000 years) and long-term (about 1 m.y.) cycles in carbonate dissolution have been observed, with strongest dissolution occurring during periods of lowered sea level. (3) Upwelling influence from the near-coastal upwelling centre has been detected by means of the opal content: interglacial periods show high opal contents, because the Benguela Current turned westward at about 20°S and carried opal-laden upwelled water to the west. Sediments from glacial periods, however, show opal minima. Besides these short-term cyclic variations in opal content, long-term cycles have been found, with maximum upwelling influence in the latest Pliocene/early Quaternary. (4) Each CaCO3 dissolution minimum (maximum) is correlated with an opal maximum (minimum) throughout the sediment sequence. (5) The oceanographic system off southwest Africa remained essentially unchanged since the latest Miocene: sea level rose and fell periodically on a small and on a large scale, and the Benguela Current flowed southeast-northwest and turned to the west at the latitude of Site 532 during interglacial periods, when sea level was high. (6) The climate in the near-coastal area of southwest Africa in the latitude of Site 532 has probably been arid throughout the investigated period.
Resumo:
The exchangeable cation compositions of organic-poor terrigenous sediments containing smectite as primary ion exchanger from a series of holes along ODP Leg 168 transect on the eastern flank of the Juan de Fuca Ridge have been examined as a function of distance from the ridge axis and burial depth. The total cation exchange capacity (CEC) values of the sediments ranged from 2 to 59 meq/100 g, increasing with increases in the wt.% smectite. At the seafloor, the exchangeable cation compositions involving Na, K, Mg, and Ca, expressed in terms of equivalent fraction, are nearly constant regardless of the different transect sites: XNa = 0.21 ± 0.04, XK = 0.08 ± 0.01, XMg = 0.33 ± 0.09, and XCa = 0.38 ± 0.09. The calculated selectivity coefficients of the corresponding quaternary exchange reactions, calculated using porewater data, are in log units -5.45 ± 0.39 for Na, 1.97 ± 0.49 for K, 0.42 ± 0.41 for Mg, and 3.06 ± 0.69 for Ca. The exchangeable cation compositions below the seafloor change systematically with distance from the ridge crest and burial depth, conforming to the trends of the same cations in the porewaters. The selectivities for Na and Mg are roughly constant at temperatures from 2 to 66°C, indicating that the equivalent fractions of these two cations are independent of sediment alteration taking place on the ridge flank. Unlike Na and Mg, the temperature influence is significant for K and Ca, with Ca-selectivity decreases being coupled with increases in K-selectivity. Although potentially related to diagenetic and/or hydrothermal mineral precipitation or recrystallization, no evidence of such alteration was detected by XRD and TEM. In sites where upwelling of hydrothermal fluids from basement is occurring, the K-selectivity of the sediment is appreciably higher than at the other sites and corresponds to the formation of (Fe, Mg) rich smectite and zeolites. Our study indicates that local increases in K-selectivity at hydrothermal sites are caused by the formation of these authigenic minerals.
Resumo:
This paper discusses the distribution of clay minerals and identification of their assemblages in relation to sedimentary facies encountered during DSDP Leg 63 drilling off southern California and Baja California. We also consider how these assemblages are determined by source areas and changes in general paleogeographic environments during different periods of sedimentation.
Resumo:
The origin of two acoustic sediment units has been studied based on lithological facies, chronology and benthic stable isotope values as well as on foraminifera and clay mineral assemblages in six marine sediment cores from Kveithola, a small trough west of Spitsbergenbanken on the western Barents Sea margin. We have identified four time slices with characteristic sedimentary environments. Before c. 14.2 cal. ka, rhythmically laminated muds indicate extensive sea ice cover in the area. From c. 13.9 to 14.2 cal. ka, muds rich in ice-rafted debris were deposited during the disintegration of grounded ice on Spitsbergenbanken. From c. 10.3 to 13.1 cal. ka, sediments with heterogeneous lithologies suggest a shifting influence of suspension settling and iceberg rafting, probably derived from a decaying Barents Sea Ice Sheet in the inner-fjord and land areas to the north of Kveithola. Holocene deposition was episodic and characterized by the deposition of calcareous sands and shell debris, indicative of strong bottom currents. We speculate that a marked erosional boundary at c. 8.2 cal. ka may have been caused by the Storegga tsunami. Whilst deposition was sparse during the Holocene, Kveithola acted as a sediment trap during the preceding deglaciation. Investigation of the deglacial sediments provides unprecedented details on the dynamics and timing of glacial retreat from Spitsbergenbanken.