990 resultados para CITRUS VARIEGATED CHLOROSIS (CVC)
Resumo:
The Xylella fastidiosa is a bacterium that is the cause of citrus variegated chlorosis (CVC). The shikimate pathway is of pivotal importance for production of a plethora of aromatic compounds in plants, bacteria, and fungi. Putative structural differences in the enzymes from the shikimate pathway, between the proteins of bacterial origin and those of plants, could be used for the development of a drug for the control of CVC. However, inhibitors for shikimate pathway enzymes should have high specificity for X. fastidiosa enzymes, since they are also present in plants. In order to pave the way for structural and functional efforts towards antimicrobial agent development, here we describe the molecular modeling of seven enzymes of the shikimate pathway of X. fastidiosa. The structural models of shikimate pathway enzymes, complexed with inhibitors, strongly indicate that the previously identified inhibitors may also inhibit the X. fastidiosa enzymes. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Xylella fastidiosa is a xylem-limited, Gram-negative bacterium responsible for citrus variegated chlorosis (CVC) in sweet oranges. In the present study, we present the recombinant expression, purification and characterization of an X. fastidiosa cysteine protease (dubbed Xylellain). The recombinant Xylellain ((HIS)Xylellain) was able to hydrolyze carbobenzoxy-Phe-Arg-7-amido-4-methylcoumarin (Z-FR-MCA) and carbobenzoxy-Arg-Arg-7-amido-4-methylcoumarin (Z-RR-MCA) with similar catalytic efficiencies, suggesting that this enzyme presents substrate specificity requirements similar to cathepsin B. The immunization of mice with (HIS)Xylellain provided us with antibodies, which recognized a protein of c. 31 kDa in the X. fastidiosa pathogenic strains 9a5c, and X. fastidiosa isolated from coffee plants. However, these antibodies recognized no protein in the nonpathogenic X. fastidiosa J1a12, suggesting the absence or low expression of this protein in the strain. These findings enabled us to identify Xylellain as a putative target for combating CVC and other diseases caused by X. fastidiosa strains.
Resumo:
Xylella fastidiosa is an important pathogen bacterium transmitted by xylem-feedings leafhoppers that colonizes the xylem of plants and causes diseases on several important crops including citrus variegated chlorosis (CVC) in orange and lime trees. Glutathione-S-transferases (GST) form a group of multifunctional isoenzymes that catalyzes both glutathione (GSH)-dependent conjugation and reduction reactions involved in the cellular detoxification of xenobiotic and endobiotic compounds. GSTs are the major detoxification enzymes found in the intracellular space and mainly in the cytosol from prokaryotes to mammals, and may be involved in the regulation of stress-activated signals by suppressing apoptosis signal-regulating kinase 1. In this study, we describe the cloning of the glutathione-S-transferase from X. fastidiosa into pET-28a(+) vector, its expression in Escherichia coli, purification and initial structural characterization. The purification of recombinant xfGST (rxfGST) to near homogeneity was achieved using affinity chromatography and size-exclusion chromatography (SEC). SEC demonstrated that rxfGST is a homodimer in solution. The secondary and tertiary structures of recombinant protein were analyzed by circular dichroism and fluorescence spectroscopy, respectively. The enzyme was assayed for activity and the results taken together indicated that rxfGST is a stable molecule, correctly folded, and highly active. Several members of the GST family have been extensively studied. However, xfGST is part of a less-studied subfamily which yet has not been structurally and biochemically characterized. In addition, these studies should provide a useful basis for future studies and biotechnological approaches of rxfGST. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Xylella fastidiosa causes citrus variegated chlorosis (CVC). Information generated from the X. fastidiosa genome project is being used to study the underlying mechanisms responsible for pathogenicity. However, the lack of an experimental host other than citrus to study plant-X. fastidiosa interaction has been an obstacle to accelerated progress in this area. We present here results of three experiments that demonstrated that tobacco could be an important experimental host for X. fastidiosa. All tobacco plants inoculated with a citrus strain of X. fastidiosa expressed unequivocal symptoms, consisting of orange leaf lesions, approximately 2 months after injection of the pathogen. CVC symptoms were observed in citrus 3 to 6 months after inoculation. The pathogen was readily detected in symptomatic tobacco plants by polymerase chain reaction (PCR) and phase contrast microscopy. In addition, X. fastidiosa was reisolated on agar plates in 4 of 10 plants. Scanning electron microscopy analysis of cross sections of stems and petioles revealed the presence of rod shaped bacteria restricted to the xylem of inoculated plants. The cell size was within the limit typical of X. fastidiosa.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Based on the premise of symbiotic control, we genetically modified the citrus endophytic bacterium Methylobacterium extorquens, strain AR1.6/2, and evaluated its capacity to colonize a model plant and its interaction with Xylella fastidiosa, the causative agent of Citrus Variegated Chlorosis (CVC). AR1.6/2 was genetically transformed to express heterologous GFP (Green Fluorescent Protein) and an endoglucanase A (EglA), generating the strains ARGFP and AREglA, respectively. By fluorescence microscopy, it was shown that ARGFP was able to colonize xylem vessels of the Catharanthus roseus seedlings. Using scanning electron microscopy, it was observed that AREglA and X. fastidiosa may co-inhabit the C. roseus vessels. M. extorquens was observed in the xylem with the phytopathogen X. fastidiosa, and appeared to cause a decrease in biofilm formation. AREglA stimulated the production of resistance protein, catalase, in the inoculated plants. This paper reports the successful transformation of AR1.6/2 to generate two different strains with a different gene each, and also indicates that AREglA and X. fastidiosa could interact inside the host plant, suggesting a possible strategy for the symbiotic control of CVC disease. Our results provide an enhanced understanding of the M. extorquens-X. fastidiosa interaction, suggesting the application of AR1.6/2 as an agent of symbiotic control.
Resumo:
The sharpshooter Bucephalogonia xanthophis (Berg) (Homoptera: Cicadellidae) is a vector of the xylem-limited bacterium, Xylella fastidiosa (Wells, Raju, Hung, Weisburg, Mandelco-Paul, and Brenner), which causes citrus variegated chlorosis. Despite the importance of citrus variegated chlorosis, the probing behavior of vectors on citrus and its implications for transmission of X. fastidiosa have not been studied. Here we studied electrical penetration graph (EPG-DC system) waveforms produced by B. xanthophis on Citrus sinensis (L.) Osbeck (Rutaceae), and their relationships with stylet activities and xylem ingestion. Electrical penetration graph waveforms were described based on amplitude, frequency, voltage level, and electrical origin of the observed traces during stylet penetration on plant tissues. The main waveforms were correlated with histological observations of salivary sheaths in plant tissues and excretion analysis, in order to determine stylet activities and their precise position. Six waveforms and associated activities are described: (S) secretion of salivary sheath and intracellular stylet pathway, (R) resting during stylet pathway, (Xc) contact of stylets with xylem vessels, (Xi) active xylem ingestion, (N) interruption within the xylem phase (during Xc or Xi), and (W) withdrawal of stylet from the plant. The sharpshooter spent 91.8% of its probing time with its stylet in the xylem, where the main activity was ingestion (Xi: 97.5%). During a probe, the most likely sequence of events is secretion of salivary sheath and pathway (S) through epidermal and parenchyma cells (all individuals), followed by contact with xylem (Xc) (67.6% of all individuals) and ingestion (Xi) (88.3% of those that exhibit waveform Xc). The mean time to contact the xylem (Xc) and initiate ingestion (Xi) after onset of the first probe was 27.8 and 34.2 min, respectively. However, sustained xylem ingestion (Xi > 5 min) was established after 39.8 min, on average. This information is basic for future studies on the transmission mechanisms of X. fastidiosa and in order to establish control strategies aimed at interfering with this process.
Resumo:
Endophytes are microorganisms that colonize plant tissues internally without causing harm to the host. Despite the increasing number of studies on sweet orange pathogens and endophytes, yeast has not been described as a sweet orange endophyte. In the present study, endophytic yeasts were isolated from sweet orange plants and identified by sequencing of internal transcribed spacer (ITS) rRNA. Plants sampled from four different sites in the state of Sao Paulo, Brazil exhibited different levels of CVC (citrus variegated chlorosis) development. Three citrus endophytic yeasts (CEYs), chosen as representative examples of the isolates observed, were identified as Rhodotorula mucilaginosa, Pichia guilliermondii and Cryptococcus flavescens. These strains were inoculated into axenic Citrus sinensis seedlings. After 45 days, endophytes were reisolated in populations ranging from 10(6) to 10(9) CFU/g of plant tissue, but, in spite of the high concentrations of yeast cells, no disease symptoms were observed. Colonized plant material was examined by scanning electron microscopy (SEM), and yeast cells were found mainly in the stomata and xylem of plants, reinforcing their endophytic nature. P. guilliermondii was isolated primarily from plants colonized by the causal agent of CVC, Xylella fastidiosa. The supernatant from a culture of P. guilliermondii increased the in vitro growth of X. fastidiosa, suggesting that the yeast could assist in the establishment of this pathogen in its host plant and, therefore, contribute to the development of disease symptoms.
Resumo:
Citrus sudden death (CSD) transmission was studied by graft-inoculation and under natural conditions. Young sweet orange trees on Rangpur rootstock were used as indicator plants. They were examined regularly for one or two characteristic markers of CSD: (i) presence of a yellow-stained layer of thickened bark on the Rangpur rootstock, and (ii) infection with the CSD-associated marafivirus. Based on these two markers, transmission of CSD was obtained, not only when budwood for graft-inoculation was taken from symptomatic, sweet orange trees on Rangpur, but also when the budwood sources were asymptomatic sweet orange trees on Cleopatra mandarin, indicating that the latter trees are symptomless carriers of the CSD agent. For natural transmission, 80 young indicator plants were planted within a citrus plot severely affected by CSD. Individual insect-proof cages were built around 40 indicator plants, and the other 40 indicator plants remained uncaged. Only two of the 40 caged indicator plants were affected by CSD, whereas 17 uncaged indicator plants showed CSD symptoms and were infected with the marafivirus. An additional 12 uncaged indicator plants became severely affected with citrus variegated chlorosis and were removed. These results strongly suggest that under natural conditions, CSD is transmitted by an aerial vector, such as an insect, and that the cages protected the trees against infection by the vector.
Resumo:
The objective of this work was the transformation of tobacco and 'Valencia' sweet orange with the GUS gene driven by the citrus phenylalanine ammonia-lyase (PAL) gene promoter (CsPP). Transformation was accomplished by co-cultivation of tobacco and 'Valência' sweet orange explants with Agrobacterium tumefaciens containing the binary vector CsPP-GUS/2201. After plant transformation and regeneration, histochemical analyses using GUS staining revealed that CsPP promoter preferentially, but not exclusively, conferred gene expression in xylem tissues of tobacco. Weaker GUS staining was also detected throughout the petiole region in tobacco and citrus CsPP transgenic plants.
Resumo:
A distribuição espacial das espécies de cigarrinhas (Dilobopterus costalimai Young, Acrogonia sp. e Oncometopia facialis Signoret), vetoras da Xylella fastidiosa, agente causal da Clorose Variegada dos Citros, foi estudada com o uso da geoestatística. As avaliações foram feitas em um pomar comercial de laranja 'Pêra' (Citrus sinensis [L.] Osb.), objetivando estabelecer meios para melhor controle dos vetores e da doença. O monitoramento da ocorrência das cigarrinhas no pomar foi feito através de amostragens mensais, utilizando-se armadilhas adesivas amarelas de 3 x 5, distribuídas uniformemente em 50 pontos na área, dispostas em laranjeiras à altura de 1,5 m do solo e substituídas mensalmente. Acrogonia sp. foi a espécie prevalente nas amostragens. Os resultados possibilitaram ajustar modelos aos semivariogramas da distribuição espacial das três espécies no pomar estudado. Durante os três anos consecutivos de amostragem, as populações de Acrogonia sp., D. costalimai e O. facialis apresentaram modelos de distribuição agregada somente nos meses de verão, inverno e primavera, respectivamente, mostrando a necessidade de monitoramento constante desses vetores para reduzir a sua população em épocas favoráveis ao seu desenvolvimento. Através de parâmetros geoestatísticos foi possível calcular a área de agregação das cigarrinhas no pomar. A espécie Acrogonia sp. apresentou área média de agregação de 15.760 m², enquanto para O. facialis e D. costalimai foi possível constatar áreas médias de agregação de 11.555 m² e 10.980 m², respectivamente. Esses resultados indicaram que para um levantamento seguro de cigarrinhas é necessário pelo menos dispor de uma armadilha por hectare.
A nested-PCR assay for detection of Xylella fastidiosa in citrus plants and sharpshooter leafhoppers
Resumo:
Aims: Detection of Xylella fastidiosa in citrus plants and insect vectors.Methods and Results: Chelex 100 resin matrix was successfully standardized allowing a fast DNA extraction of X. fastidiosa. An amplicon of 500 bp was observed in samples of citrus leaf and citrus xylem extract, with and without symptoms of citrus variegated chlorosis, using PCR with a specific primer set indicating the presence of X. fastidiosa. The addition of insoluble acid-washed polyvinylpyrrolidone (PVPP) prior to DNA extraction of insect samples using Chelex 100 resin together with nested-PCR permitted the detection of X. fastidiosa within sharpshooter heads with great sensitivity. It was possible to detect up to two bacteria per reaction. From 250 sharpshooter samples comprising four species (Dilobopterus costalimai, Oncometopia facialis, Bucephalogonia xanthopis and Acrogonia sp.), 87 individuals showed positive results for X. fastidiosa in a nested-PCR assay.Conclusions: the use of Chelex 100 resin allowed a fast and efficient DNA extraction to be used in the detection of X. fastidiosa in citrus plants and insect vectors by PCR and nested-PCR assays, respectively.Significance and Impact of the study: the employment of efficient and sensitive methods to detect X. fastidiosa in citrus plants and insect vectors will greatly assist epidemiological studies.