378 resultados para CIRCUITRY


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bibliography: p. 74.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

"This work was supported in part by the Office of Naval Research under Contract No. Nonr-1834(15)"

Relevância:

20.00% 20.00%

Publicador:

Resumo:

"This publication is intended as an appendix to C.A.L. Report 'Integration and non-destructive sensing with magnetic cores.'"

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cortical pyramidal cells, while having a characteristic morphology, show marked phenotypic variation in primates. Differences have been reported in their size, branching structure and spine density between cortical areas. In particular, there is a systematic increase in the complexity of the structure of pyramidal cells with anterior progression through occipito-temporal cortical visual areas. These differences reflect area-specific specializations in cortical circuitry, which are believed to be important for visual processing. However, it remains unknown as to whether these regional specializations in pyramidal cell structure are restricted to primates. Here we investigated pyramidal cell structure in the visual cortex of the tree shrew, including the primary (V1), second (V2) and temporal dorsal (TD) areas. As in primates, there was a trend for more complex branching structure with anterior progression through visual areas in the tree shrew. However, contrary to the trend reported in primates, cells in the tree shrew tended to become smaller with anterior progression through V1, V2 and TD. In addition, pyramidal cells in V1 of the tree shrew are more than twice as spinous as those in primates. These data suggest that variables that shape the structure of adult cortical pyramidal cells differ among species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MRI diffusion tensor imaging (DTI), optimized for measuring the trace of the diffusion tensor, was used to investigate microstructural changes in the brains of 12 individuals with schizophrenia compared with 12 matched control subjects. To control for the effects of anatomic variation between subject groups, all participants' diffusion images were non-linearly registered to standard anatomical space. Significant statistical differences in mean diffusivity (MD) measures between the two groups were determined on a pixel-by-pixel basis, using Gaussian random field theory. We found significantly elevated MD measures within temporal, parietal and prefrontal cortical regions in the schizophrenia group (P > 0.001), especially within the medial frontal gyrus and anterior cingulate. The dorsal medial and anterior nucleus of the thalamus, including the caudate, also exhibited significantly increased MD in the schizophrenia group (P > 0.001). This study has shown for the first time that MD measures offer an alternative strategy for investigating altered prefrontal-thalamic circuitry in schizophrenia. (c) 2006 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background - Neural substrates of emotion dysregulation in adolescent suicide attempters remain unexamined. Method - We used functional magnetic resonance imaging to measure neural activity to neutral, mild or intense (i.e. 0%, 50% or 100% intensity) emotion face morphs in two separate emotion-processing runs (angry and happy) in three adolescent groups: (1) history of suicide attempt and depression (ATT, n = 14); (2) history of depression alone (NAT, n = 15); and (3) healthy controls (HC, n = 15). Post-hoc analyses were conducted on interactions from 3 group × 3 condition (intensities) whole-brain analyses (p < 0.05, corrected) for each emotion run. Results - To 50% intensity angry faces, ATT showed significantly greater activity than NAT in anterior cingulate gyral–dorsolateral prefrontal cortical attentional control circuitry, primary sensory and temporal cortices; and significantly greater activity than HC in the primary sensory cortex, while NAT had significantly lower activity than HC in the anterior cingulate gyrus and ventromedial prefrontal cortex. To neutral faces during the angry emotion-processing run, ATT had significantly lower activity than NAT in the fusiform gyrus. ATT also showed significantly lower activity than HC to 100% intensity happy faces in the primary sensory cortex, and to neutral faces in the happy run in the anterior cingulate and left medial frontal gyri (all p < 0.006,corrected). Psychophysiological interaction analyses revealed significantly reduced anterior cingulate gyral–insula functional connectivity to 50% intensity angry faces in ATT v. NAT or HC. Conclusions - Elevated activity in attention control circuitry, and reduced anterior cingulate gyral–insula functional connectivity, to 50% intensity angry faces in ATT than other groups suggest that ATT may show inefficient recruitment of attentional control neural circuitry when regulating attention to mild intensity angry faces, which may represent a potential biological marker for suicide risk.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Episodic memory formation is shaped by expectation. Events that generate expectations have the capacity to influence memory. Additionally, whether subsequent events meet or violate expectations has consequences for memory. However, clarification is still required to illuminate the circumstances and direction of memory modulation. In the brain, the mechanisms by which expectation modulates memory formation also require consideration. The dopamine system has been implicated in signaling events associated with different states of expectancy; it has also been shown to modulate episodic memory formation in the hippocampus. Thus, the studies included in this dissertation utilized both functional magnetic resonance imaging (fMRI) and behavioral testing to examine when and how the dopaminergic system supports the modulation of memory by expectation. The work aimed to characterize the activation of dopaminergic circuitry in response to cues that generate expectancy, during periods of anticipation, and in response to outcomes that resolve expectancy. The studies also examined how each of these event types influenced episodic memory formation. The present findings demonstrated that novelty and expectancy violation both drive dopaminergic circuitry capable of contributing to memory formation. Consistent with elevated dopaminergic midbrain and hippocampus activation for each, expected versus expectancy violating novelty did not differentially affect memory success. We also showed that high curiosity expectancy states drive memory formation. This was supported by activation in dopaminergic circuitry that was greater for subsequently remembered information only in the high curiosity state. Finally, we showed that cues that generate high expected reward value versus high reward uncertainty differentially modulate memory formation during reward anticipation. This behavioral result was consistent with distinct temporal profiles of dopaminergic action having differential downstream effects on episodic memory formation. Integrating the present studies with previous research suggests that dopaminergic circuitry signals events that are unpredicted, whether cuing or resolving expectations. It also suggests that contextual differences change the contribution of the dopaminergic system during anticipation, depending on the nature of the expectation. And finally, this work is consistent with a model in which dopamine elevation in response to expectancy events positively modulates episodic memory formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This review summarizes evidence of dysregulated reward circuitry function in a range of neurodevelopmental and psychiatric disorders and genetic syndromes. First, the contribution of identifying a core mechanistic process across disparate disorders to disease classification is discussed, followed by a review of the neurobiology of reward circuitry. We next consider preclinical animal models and clinical evidence of reward-pathway dysfunction in a range of disorders, including psychiatric disorders (i.e., substance-use disorders, affective disorders, eating disorders, and obsessive compulsive disorders), neurodevelopmental disorders (i.e., schizophrenia, attention-deficit/hyperactivity disorder, autism spectrum disorders, Tourette's syndrome, conduct disorder/oppositional defiant disorder), and genetic syndromes (i.e., Fragile X syndrome, Prader-Willi syndrome, Williams syndrome, Angelman syndrome, and Rett syndrome). We also provide brief overviews of effective psychopharmacologic agents that have an effect on the dopamine system in these disorders. This review concludes with methodological considerations for future research designed to more clearly probe reward-circuitry dysfunction, with the ultimate goal of improved intervention strategies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eye-tracking was used to examine how younger and older adults use syntactic and semantic information to disambiguate noun/verb (NV) homographs (e.g., park). We find that young adults exhibit inflated first fixations to NV-homographs when only syntactic cues are available for disambiguation (i.e., in syntactic prose). This effect is eliminated with the addition of disambiguating semantic information. Older adults (60+) as a group fail to show the first fixation effect in syntactic prose; they instead reread NV homographs longer. This pattern mirrors that in prior event-related potential work (Lee & Federmeier, 2009, 2011), which reported a sustained frontal negativity to NV-homographs in syntactic prose for young adults, which was eliminated by semantic constraints. The frontal negativity was not observed in older adults as a group, although older adults with high verbal fluency showed the young-like pattern. Analyses of individual differences in eye-tracking patterns revealed a similar effect of verbal fluency in both young and older adults: high verbal fluency groups of both ages show larger first fixation effects, while low verbal fluency groups show larger downstream costs (rereading and/or refixating NV homographs). Jointly, the eye-tracking and ERP data suggest that effortful meaning selection recruits frontal brain areas important for suppressing contextually inappropriate meanings, which also slows eye movements. Efficacy of fronto-temporal circuitry, as captured by verbal fluency, predicts the success of engaging these mechanisms in both young and older adults. Failure to recruit these processes requires compensatory rereading or leads to comprehension failures (Lee & Federmeier, in press).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of odors in the long-distance navigation of birds has elicited intense debate for more than half a century. Failure to resolve many of the issues fueling this debate is due at least in part to the absence of controls for a variety of non-specific effects that odors have on the navigational process. The present experiments were carried out to investigate whether the olfactory inputs are involved only in “activation” of neuronal circuitry involved in navigation or are also playing a role in providing directional information. Experienced adult pigeons were exposed to controlled olfactory stimuli during different segments of the journey (release site vs. displacement + release site). Protein levels of IEGs (immediate early genes used to mark synaptic activity) were analyzed in areas within the olfactory/navigation avian circuitry. The results indicate that 1) exposure to natural odors at the release site (and not before) elicit greater activation across brain regions than exposure to filtered air, artificial odors, and natural odors along the entire outward journey (from home to the release site, inclusive); 2) activation of the piriform cortex in terms of odor discrimination is lateralized; 3) activation of the navigation circuitry is achieved by means of lateralized activation of piriform cortex neurons. Altogether, the findings provide the first direct evidence that activation of the avian navigation circuitry is mediated by asymmetrical processing of olfactory input occurring in the right piriform cortex.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alcohol is one of the oldest and most widely used drugs on the planet, but the cellular mechanisms by which it affects neural function are still poorly understood. Unlike other drugs of abuse, alcohol has no specific receptor in the nervous system, but is believed to operate through GABAergic and serotonergic neurotransmitter systems. Invertebrate models offer circuits of reduced numerical complexity and involve the same cell types and neurotransmitter systems as vertebrate circuits. The well-understood neural circuits controlling crayfish escape behavior offer neurons that are modulated by GABAergic inhibition, thus making tail-flip circuitry an effective circuit model to study the cellular mechanisms of acute alcohol exposure. Crayfish are capable of two stereotyped, reflexive escape behaviors known as tail-flips that are controlled by two different pairs of giant interneurons, the lateral giants (LG) and the medial giants (MG). The LG circuit has been an established model in the neuroscience field for more than 60 years and is almost completely mapped out. In contrast, the MG is still poorly understood, but has important behavioral implications in social behavior and value-based decision making. In this dissertation, I show that both crayfish tail-flip circuitry are physiologically sensitive to relevant alcohol concentrations and that this sensitivity is observable on the single cell level. I also show that this ethyl alcohol (EtOH) sensitivity in the LG can be changed by altering the crayfish’s recent social experience and by removing descending inputs to the LG. While the MG exhibits similar physiological sensitivity, its inhibitory properties have never been studied before this research. Through the use of electrophysiological and pharmacological techniques, I show that the MG exhibits many similar inhibitory properties as the LG that appear to be the result of GABA-mediated chloride currents. Finally, I present evidence that the EtOH-induced changes in the MG are blocked through pre-treatment of the potent GABAA receptor agonist, muscimol, which underlines the role of GABA in EtOH’s effects on crayfish tail-flip circuitry. The work presented here opens the way for crayfish tail-flip circuitry to be used as an effective model for EtOH’s acute effects on aggression and value-based decision making.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Behavioral adaptiveness to different situations as well as behavioral individuality result from the interrelations between environmental sitmuli and the responses of an organism.These kind of interrelationships also shape the neural circuits as well as characterize the plasticity and the neural individuality of the organism. Studies on neural plasticity may analyze changes in neural circuitry after environmental manipulations or changes in behavior after lesions in the nervous system. Issues on neural plasticity and recovery of function refer both to physiology and behavior as well as to the subjacent mechanisms related to morphology, biochemistry and genetics. They may be approached at the systemic, behavioral, cellular and molecular levels. This work intends to characterize these kinds of studies pointing to their relations with the analyis of behavior and learning.The analysis of how the environmental-organismic interrelationships affect the neural substrates of behavior is pointed as a very stimulating area for investigation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Happy emotional states have not been extensively explored in functional magnetic resonance imaging studies using autobiographic recall paradigms. We investigated the brain circuitry engaged during induction of happiness by standardized script-driven autobiographical recall in 11 healthy subjects (6 males), aged 32.4 ± 7.2 years, without physical or psychiatric disorders, selected according to their ability to vividly recall personal experiences. Blood oxygen level-dependent (BOLD) changes were recorded during auditory presentation of personal scripts of happiness, neutral content and negative emotional content (irritability). The same uniform structure was used for the cueing narratives of both emotionally salient and neutral conditions, in order to decrease the variability of findings. In the happiness relative to the neutral condition, there was an increased BOLD signal in the left dorsal prefrontal cortex and anterior insula, thalamus bilaterally, left hypothalamus, left anterior cingulate gyrus, and midportions of the left middle temporal gyrus (P < 0.05, corrected for multiple comparisons). Relative to the irritability condition, the happiness condition showed increased activity in the left insula, thalamus and hypothalamus, and in anterior and midportions of the inferior and middle temporal gyri bilaterally (P < 0.05, corrected), varying in size between 13 and 64 voxels. Findings of happiness-related increased activity in prefrontal and subcortical regions extend the results of previous functional imaging studies of autobiographical recall. The BOLD signal changes identified reflect general aspects of emotional processing, emotional control, and the processing of sensory and bodily signals associated with internally generated feelings of happiness. These results reinforce the notion that happiness induction engages a wide network of brain regions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE: Despite the relevance of irritability emotions to the treatment, prognosis and classification of psychiatric disorders, the neurobiological basis of this emotional state has been rarely investigated to date. We assessed the brain circuitry underlying personal script-driven irritability in healthy subjects (n = 11) using functional magnetic resonance imaging. METHOD: Blood oxygen level-dependent signal changes were recorded during auditory presentation of personal scripts of irritability in contrast to scripts of happiness or neutral emotional content. Self-rated emotional measurements and skin conductance recordings were also obtained. Images were acquired using a 1,5T magnetic resonance scanner. Brain activation maps were constructed from individual images, and between-condition differences in the mean power of experimental response were identified by using cluster-wise nonparametric tests. RESULTS: Compared to neutral scripts, increased blood oxygen level-dependent signal during irritability scripts was detected in the left subgenual anterior cingulate cortex, and in the left medial, anterolateral and posterolateral dorsal prefrontal cortex (cluster-wise p-value < 0.05). While the involvement of the subgenual cingulate and dorsal anterolateral prefrontal cortices was unique to the irritability state, increased blood oxygen level-dependent signal in dorsomedial and dorsal posterolateral prefrontal regions were also present during happiness induction. CONCLUSION: Irritability induction is associated with functional changes in a limited set of brain regions previously implicated in the mediation of emotional states. Changes in prefrontal and cingulate areas may be related to effortful cognitive control aspects that gain salience during the emergence of irritability.