993 resultados para CHO-k1 cells
Resumo:
The comet assay has been described as an efficient tool for the detection of changes in the DNA molecule of cells exposed to contaminating agents in vivo and in vitro. The possible environmental contamination due to the persistence of chromium residues from tannery effluents was determined in the waters of the Córrego dos Bagres stream, Municipal district of Franca/SP, by the comet assay on CHO-K1 cells. Water samples were collected during the four seasons of the year 2001 at three distinct stations along the river. The data suggest that the comet test showed good sensitivity for the environmental monitoring of these waters and indicated that this test can be efficient for the determination of the quality of waters contaminated with effluents containing heavy metal residues such as chromium.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Iodide transport is necessary for the synthesis of thyroid hormones following accumulation in the follicular lumen out of thyroid cells, via channels unknown with the exception of pendrin. According to our hypothesis, TMEM16A could be the main molecular identity of the channel mediating iodide efflux in the thyroid gland. TMEM16A is the prior candidate for calcium-activated chloride conductance (CaCC). TMEM16A belongs to the TMEM16/anoctamin family comprising ten members (TMEM16A-K). Higher affinity of TMEM16A for iodide and predicted expression in the thyroid gland suggest its mediation of iodide efflux. The aim of this project was to identify the role of TMEM16A in iodide transport in the thyroid gland, by characterizing its molecular expression and functional properties. We demonstrated that TMEM16F, H, K transcripts are expressed in FRTL-5 thyroid cells, as well as TMEM16A, which is TSH-independent. Tumor tissue from human thyroid maintains TMEM16A expression. Functional in vivo experiments in FRTL-5, stably expressing YFP-H148Q/I152L fluorescent protein as a biosensor, showed that iodide efflux is stimulated by agonists of purinergic receptors with an order of potency of ATP>UTP>ADP (compatible with an involvement of P2Y purinergic receptors), and by agonists of adrenergic receptors (epinephrine, norepinephrine and phenylephrine). Iodide efflux was blocked by α-receptor antagonists prazosin and phentolamine, consistent with a role of α1 adrenergic receptors. Iodide efflux was specifically dependent on calcium mobilized from intracellular compartments and induced by the calcium ionophore ionomycin. CaCC blockers suppressed ionomycin-/ATP-/epinephrine-stimulated iodide efflux. Heterologous expression of TMEM16A in CHO K1 cells induced calcium-activated iodide fluxes. All these results support the hypothesis of the involvement of TMEM16A in calcium-dependent iodide efflux induced by receptor agonists in thyroid cells. TMEM16A may represent a new pharmacological target for thyroid cancer therapy, since its blockade may enhance the retention of radioiodide by tumour cells enhancing the efficacy of radioablative therapy.
Resumo:
The uptake of radiolabeled somatostatin analogs by tumor cells through receptor-mediated internalization is a critical process for the in vivo targeting of tumoral somatostatin receptors. In the present study, the somatostatin receptor internalization induced by a variety of somatostatin analogs was measured with new immunocytochemical methods that allow characterization of trafficking of the somatostatin receptor subtype 2 (sst2), somatostatin receptor subtype 3 (sst3), and somatostatin receptor subtype 5 (sst5) in vitro at the protein level. METHODS: Human embryonic kidney 293 (HEK293) cells expressing the sst2, sst3, or the sst5 were used in a morphologic immunocytochemical internalization assay using specific sst2, sst3 and sst5 antibodies to qualitatively and quantitatively determine the capability of somatostatin agonists or antagonists to induce somatostatin receptor internalization. In addition, the internalization properties of a selection of these agonists have been compared and quantified in sst2-expressing CHO-K1 cells using an ELISA. RESULTS: Agonists with a high sst2-binding affinity were able to induce sst2 internalization in the HEK293 and CHO-K1 cell lines. New sst2 agonists, such as Y-DOTA-TATE, Y-DOTA-NOC, Lu-DOTA-BOC-ATE (where DOTA is 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid; TATE is [Tyr3, Thr8]-octreotide; NOC is [1-NaI3]-octreotide; and BOC-ATE is [BzThi3, Thr8]-octreotide), iodinated sugar-containing octreotide analogs, or BIM-23244 were considerably more potent in internalizing sst2 than was DTPA-octreotide (where DTPA is diethylenetriaminepentaacetic acid). Similarly, compounds with high sst3 affinity such as KE108 were able to induce sst3 internalization. In sst2- or sst3-expressing cell lines, agonist-induced receptor internalization was efficiently abolished by sst2- or sst3-selective antagonists, respectively. Antagonists alone had no effect on sst2 or sst3 internalization. We also showed that somatostatin-28 and somatostatin-14 can induce sst5 internalization. Unexpectedly, however, potent sst5 agonists such as KE108, BIM-23244, and L-817,818 were not able to induce sst5 internalization under the same conditions. CONCLUSION: Using sensitive and reproducible immunocytochemical methods, the ability of various somatostatin analogs to induce sst2, sst3, and sst5 internalization has been qualitatively and quantitatively determined. Whereas all agonists triggered sst2 and sst3 internalization, sst5 internalization was induced by natural somatostatin peptides but not by synthetic high-affinity sst5 agonists. Such assays will be of considerable help for the future characterization of ligands foreseen for nuclear medicine applications.
Resumo:
Fibrillin-1 and -2 are large secreted glycoproteins that are known to be components of extracellular matrix microfibrils located in the vasculature, basement membrane and various connective tissues. These microfibrils are often associated with a superstructure known as the elastic fiber. During the development of elastic tissues, fibrillin microfibrils precede the appearance of elastin and may provide a scaffolding for the deposition and crosslinking of elastin. Using RT/PCR, we cloned and sequenced 3.85Kbp of the FBN2 gene. Five differences were found between our contig sequence and that published by Zhang et al. (1995). Like many extracellular matrix proteins, the fibrillins are modular proteins. We compared analogous domains of the two fibrillins and also members of the latent TGF-$\beta$ binding protein (LTBP) family to determine their phylogenetic relationship. We found that the two families are homologous. LTBP-2 is the most similar to the fibrillin family while FBN-1 is the most similar to the LTBP family. The fibrillin-1 carboxy terminal domain is proteolytically processed. Two eukaryotic protein expression systems, baculoviral and CHO-K1, were developed to examine the proteolytic processing of the carboxy terminal domain of the fibrillin-1 protein. Both expression systems successfully processed the domain and both processed a mutant less efficiently. In the CHO-K1 cells, processing occurred intracellularly. ^
Resumo:
BACKGROUND AND PURPOSE 4'-O-methylhonokiol (MH) is a natural product showing anti-inflammatory, anti-osteoclastogenic, and neuroprotective effects. MH was reported to modulate cannabinoid CB2 receptors as an inverse agonist for cAMP production and an agonist for intracellular [Ca2+]. It was recently shown that MH inhibits cAMP formation via CB2 receptors. In this study, the exact modulation of MH on CB2 receptor activity was elucidated and its endocannabinoid substrate-specific inhibition (SSI) of cyclooxygenase-2 (COX-2) and CNS bioavailability are described for the first time. METHODS CB2 receptor modulation ([35S]GTPγS, cAMP, and β-arrestin) by MH was measured in hCB2-transfected CHO-K1 cells and native conditions (HL60 cells and mouse spleen). The COX-2 SSI was investigated in RAW264.7 cells and in Swiss albino mice by targeted metabolomics using LC-MS/MS. RESULTS MH is a CB2 receptor agonist and a potent COX-2 SSI. It induced partial agonism in both the [35S]GTPγS binding and β-arrestin recruitment assays while being a full agonist in the cAMP pathway. MH selectively inhibited PGE2 glycerol ester formation (over PGE2) in RAW264.7 cells and significantly increased the levels of 2-AG in mouse brain in a dose-dependent manner (3 to 20 mg kg(-1)) without affecting other metabolites. After 7 h from intraperitoneal (i.p.) injection, MH was quantified in significant amounts in the brain (corresponding to 200 to 300 nM). CONCLUSIONS LC-MS/MS quantification shows that MH is bioavailable to the brain and under condition of inflammation exerts significant indirect effects on 2-AG levels. The biphenyl scaffold might serve as valuable source of dual CB2 receptor modulators and COX-2 SSIs as demonstrated by additional MH analogs that show similar effects. The combination of CB2 agonism and COX-2 SSI offers a yet unexplored polypharmacology with expected synergistic effects in neuroinflammatory diseases, thus providing a rationale for the diverse neuroprotective effects reported for MH in animal models.
Resumo:
We have previously shown that the LIM domains of paxillin operate as the focal adhesion (FA)-targeting motif of this protein. In the current study, we have identified the capacity of paxillin LIM2 and LIM3 to serve as binding sites for, and substrates of serine/threonine kinases. The activities of the LIM2- and LIM3-associated kinases were stimulated after adhesion of CHO.K1 cells to fibronectin; consequently, a role for LIM domain phosphorylation in regulating the subcellular localization of paxillin after adhesion to fibronectin was investigated. An avian paxillin-CHO.K1 model system was used to explore the role of paxillin phosphorylation in paxillin localization to FAs. We found that mutations of paxillin that mimicked LIM domain phosphorylation accelerated fibronectin-induced localization of paxillin to focal contacts. Further, blocking phosphorylation of the LIM domains reduced cell adhesion to fibronectin, whereas constitutive LIM domain phosphorylation significantly increased the capacity of cells to adhere to fibronectin. The potentiation of FA targeting and cell adhesion to fibronectin was specific to LIM domain phosphorylation as mutation of the amino-terminal tyrosine and serine residues of paxillin that are phosphorylated in response to fibronectin adhesion had no effect on the rate of FA localization or cell adhesion. This represents the first demonstration of the regulation of protein localization through LIM domain phosphorylation and suggests a novel mechanism of regulating LIM domain function. Additionally, these results provide the first evidence that paxillin contributes to “inside-out” integrin-mediated signal transduction.
Resumo:
Glycolipid glycosyltransferases catalyze the stepwise transfer of monosaccharides from sugar nucleotides to proper glycolipid acceptors. They are Golgi resident proteins that colocalize functionally in the organelle, but their intimate relationships are not known. Here, we show that the sequentially acting UDP-GalNAc:lactosylceramide/GM3/GD3 β-1,4-N-acetyl-galactosaminyltransferase and the UDP-Gal:GA2/GM2/GD2 β-1,3-galactosyltransferase associate physically in the distal Golgi. Immunoprecipitation of the respective epitope-tagged versions expressed in transfected CHO-K1 cells resulted in their mutual coimmunoprecipitation. The immunocomplexes efficiently catalyze the two transfer steps leading to the synthesis of GM1 from exogenous GM3 in the presence of UDP-GalNAc and UDP-Gal. The N-terminal domains (cytosolic tail, transmembrane domain, and few amino acids of the stem region) of both enzymes are involved in the interaction because (i) they reproduce the coimmunoprecipitation behavior of the full-length enzymes, (ii) they compete with the full-length counterpart in both coimmunoprecipitation and GM1 synthesis experiments, and (iii) fused to the cyan and yellow fluorescent proteins, they localize these proteins to the Golgi membranes in an association close enough as to allow fluorescence resonance energy transfer between them. We suggest that these associations may improve the efficiency of glycolipid synthesis by channeling the intermediates from the position of product to the position of acceptor along the transfer steps.
Resumo:
Author: Kristopher D. Veo Title: Amino acid residues implicated in the interaction of Melanocortin ligands and their receptors: A study of MC2R selectivity Advisor: Dr. Robert M. Dores Degree Date: August 2009 ABSTRACT Melanocortin receptor ligand selectivity has been a question not easily answered. The inability to functionally express melanocortin 2 receptor (MC2R) has inhibited the study of why MC2R is only stimulated by ACTH, a melanocortin hormone. With the recent discovery of the MC2R accessory protein (MRAP), creating a heterologous system is now feasible. Using a general cell line like CHO-K1 cells, which do not express endogenous MCRs, we were able to create a heterologous expression system and test the selectivity of MC2R using analog variants of ACTH(1-24). Our results indicate an amino acid requirement in the C-terminal portion of ACTH(1-24) for activation, which supports the 2-step method of activation hypothesized for MC2R. This site, the tetra basic cleavage site, when altered does not stimulate cAMP production and does not compete with ACTH(1-24) for binding. We also demonstrate the potential for a non-mammalian MC2R system in cloning full length Silurana tropicalis MC2R and completed localization studies with this system with MRAP using CHO-K1 cells.
Resumo:
Cachexia is characterised by a progressive weight loss due to depletion of both skeletal muscle and adipose tissue. The loss of adipose tissue is due to the production of a tumour-derived lipid mobilising factor (LMF), which has been shown to directly induce lipolysis in isolated epididymal murine white adipocytes. The administration of LMF to a non-tumour bearing mice produced a rapid weight loss, with a specific reduction in carcass lipid with also some redistribution of lipid with the accumulation of lipid in the liver. There was also up-regulation of uncoupling protein-1 and -2 mRNA and protein expression in brown adipose tissue, suggesting that an adaptive process occurs due to increased energy mobilisation. There was also up-regulation of UCP-2 in the livers of LMF treated mice, suggesting a protective mechanism to the build up of lipid in the livers, which would produce free radical by-products. LMF was also shown to stimulate cyclic AMP production in CHO-K1 cells transfected with human -3 adrenergic receptors and inhibited by the -β3 antagonist SR59230A. LMF binding was also inhibited by SR59230A in isolated receptors. This suggests that LMF mediates its effects through a β3 adrenergic receptor. There were also changes in glucose and fatty acid uptake in LMF treated mice, which suggests metabolic changes are occurring. The study suggests that a tumour derived lipolytic factor acts through the 3 adrenoceptor producing effects on lipid mobilisation, energy expenditure and glucose metabolism.
Resumo:
Objectives: The goal of the current study is to determine whether the ß-adrenoreceptor (ß-AR) plays a role in the anti-obesity and anti-diabetic effects of zinc-a2-glycoprotein (ZAG). Material and methods: This has been investigated in CHO-K1 cells transfected with the human ß1-, ß2-, ß3-AR and in ob/ob mice. Cyclic AMP assays were carried out along with binding studies. Ob/ob mice were treated with ZAG and glucose transportation and insulin were examined in the presence or absence of propranolol. Results: ZAG bound to the ß3-AR with higher affinity (Kd 46±1nM) than the ß2-AR (Kd 71±3nM) while there was no binding to the ß1-AR, and this correlated with the increases in cyclic AMP in CHO-K1 cells transfected with the various ß-AR and treated with ZAG. Treatment of ob/ob mice with ZAG increased protein expression of ß3-AR in gastrocnemius muscle, and in white and brown adipose tissues, but had no effect on expression of ß1- and ß2-AR. A reduction of body weight was seen and urinary glucose excretion, increase in body temperature, reduction in maximal plasma glucose and insulin levels in the oral glucose tolerance test, and stimulation of glucose transport into skeletal muscle and adipose tissue, were completely attenuated by the non-specific ß-AR antagonist propranolol. Conclusion: The results suggest that the effects of ZAG on body weight and insulin sensitivity in ob/ob mice are manifested through a ß-3AR, or possibly a ß2-AR.
Resumo:
Background and Purpose Although it is established that the receptor activity modifying proteins (RAMPs) can interact with a number of GPCRs, little is known about the consequences of these interactions. Here the interaction of RAMPs with the glucagon-like peptide 1 receptor (GLP-1 receptor), the human vasoactive intestinal polypeptide/pituitary AC-Activating peptide 2 receptor (VPAC) and the type 1 corticotrophin releasing factor receptor (CRF) has been examined. Experimental Approach GPCRs were co-transfected with RAMPs in HEK 293S and CHO-K1 cells. Cell surface expression of RAMPs and GPCRs was examined by elisa. Where there was evidence for interactions, agonist-stimulated cAMP production, Ca mobilization and GTPγS binding to G, G, G and G were examined. The ability of CRF to stimulate adrenal corticotrophic hormone release in Ramp2 mice was assessed. Key Results The GLP-1 receptor failed to enhance the cell surface expression of any RAMP. VPAC enhanced the cell surface expression of all three RAMPs. CRF enhanced the cell surface expression of RAMP2; the cell surface expression of CRF was also increased. There was no effect on agonist-stimulated cAMP production. However, there was enhanced G-protein coupling in a receptor and agonist-dependent manner. The CRF: RAMP2 complex resulted in enhanced elevation of intracellular calcium to CRF and urocortin 1 but not sauvagine. In Ramp2 mice, there was a loss of responsiveness to CRF. Conclusions and Implications The VPAC and CRF receptors interact with RAMPs. This modulates G-protein coupling in an agonist-specific manner. For CRF, coupling to RAMP2 may be of physiological significance. © 2012 The Authors. British Journal of Pharmacology © 2012 The British Pharmacological Society.