347 resultados para CHLAMYDIA-PSITTACI


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chlamydia trachomatis is a major cause of sexually transmitted diseases worldwide. There currently is no vaccine to protect against chlamydial infection of the female reproductive tract. Vaccine development has predominantly involved using the murine model, however infection of female guinea pigs with Chlamydia caviae more closely resembles chlamydial infection of the human female reproductive tract, and presents a better model to assess potential human chlamydial vaccines. We immunised female guinea pigs intranasally with recombinant major outer membrane protein (r-MOMP) combined with CpG-10109 and cholera toxin adjuvants. Both systemic and mucosal immune responses were elicited in immunised animals. MOMP-specific IgG and IgA were present in the vaginal mucosae, and high levels of MOMP-specific IgG were detected in the serum of immunised animals. Antibodies from the vaginal mucosae were also shown to be capable of neutralising C. caviae in vitro. Following immunisation, animals were challenged intravaginally with a live C. caviae infection of 102 inclusion forming units. We observed a decrease in duration of infection and a significant (p<0.025) reduction in infection load in r-MOMP immunised animals, compared to animals immunised with adjuvant only. Importantly, we also observed a marked reduction in upper reproductive tract (URT) pathology in r-MOMP immunised animals. Intranasal immunisation of female guinea pigs with r-MOMP was able to provide partial protection against C. caviae infection, not only by reducing chlamydial burden but also URT pathology. This data demonstrates the value of using the guinea pig model to evaluate potential chlamydial vaccines for protection against infection and disease pathology caused by C. trachomatis in the female reproductive tract.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Infertility is a worldwide health problem with one in six couples suffering from this condition and with a major economic burden on the global healthcare industry. Estimates of the current global infertility rate suggest that 15% of couples are infertile (Zegers-Hochschild et al 2009) defined as: (1) failure to conceive after 12 months of unprotected sexual intercourse (i.e. infertility); (2) repeated implantation failure following ART cycles; or (3) recurrent miscarriage without difficulty conceiving (natural conceptions). Tubal factor infertility is among the leading causes of female factor infertility accounting for 7-9.8% of all female factor infertilities. Tubal disease directly causes from 36% to 85% of all cases of female factor infertility in developed and developing nations respectively and is associated with polymicrobial aetiologies. One of the leading global causes of tubal factor infertility is thought to be symptomatic (and asymptomatic in up to 70% cases) infection of the female reproductive tract with the sexually transmitted pathogen, Chlamydia trachomatis. Infection-related damage to the Fallopian tubes caused by Chlamydia accounts for more than 70% of cases of infertility in women from developing nations such as sub-Saharan Africa (Sharma et al 2009). Bacterial vaginosis, a condition associated with increased transmission of sexually transmitted infections including those caused by Neisseria gonorrhoeae and Mycoplasma genitalium is present in two thirds of women with pelvic inflammatory disease (PID). This review will focus on (1) the polymicrobial aetiologies of tubal factor infertility and (2) studies involved in screening for, and treatment and control of, Chlamydial infection to prevent PID and the associated sequelae of Fallopian tube inflammation that may lead to infertility and ectopic pregnancy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Female sex hormones are known to regulate the adaptive and innate immune functions of the female reproductive tract. This review aims to update our current knowledge of the effects of the sex hormones estradiol and progesterone in the female reproductive tract on innate immunity, antigen presentation, specific immune responses, antibody secretion, genital tract infections caused by Chlamydia trachomatis, and vaccine-induced immunity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chlamydia pneumoniae causes a range of respiratory infections including bronchitis, pharyngitis and pneumonia. Infection has also been implicated in exacerbation/initiation of asthma and chronic obstructive pulmonary disease (COPD) and may play a role in atherosclerosis and Alzheimer's disease. We have used a mouse model of Chlamydia respiratory infection to determine the effectiveness of intranasal (IN) and transcutaneous immunization (TCI) to prevent Chlamydia lung infection. Female BALB/c mice were immunized with chlamydial major outer membrane protein (MOMP) mixed with cholera toxin and CpG oligodeoxynucleotide adjuvants by either the IN or TCI routes. Serum and bronchoalveolar lavage (BAL) were collected for antibody analysis. Mononuclear cells from lung-draining lymph nodes were stimulated in vitro with MOMP and cytokine mRNA production determined by real time PCR. Animals were challenged with live Chlamydia and weighed daily following challenge. At day 10 (the peak of infection) animals were sacrificed and the numbers of recoverable Chlamydia in lungs determined by real time PCR. MOMP-specific antibody-secreting cells in lung tissues were also determined at day 10 post-infection. Both IN and TCI protected animals against weight loss compared to non-immunized controls with both immunized groups gaining weight by day 10-post challenge while controls had lost 6% of body weight. Both immunization protocols induced MOMP-specific IgG in serum and BAL while only IN immunization induced MOMP-specific IgA in BAL. Both immunization routes resulted in high numbers of MOMP-specific antibody-secreting cells in lung tissues (IN > TCI). Following in vitro re-stimulation of lung-draining lymph node cells with MOMP; IFNγ mRNA increased 20-fold in cells from IN immunized animals (compared to non-immunized controls) while IFNγ levels increased 6- to 7-fold in TCI animals. Ten days post challenge non-immunized animals had >7000 IFU in their lungs, IN immunized animals <50 IFU and TCI immunized animals <1500 IFU. Thus, both intranasal and transcutaneous immunization protected mice against respiratory challenge with Chlamydia. The best protection was obtained following IN immunization and correlated with IFNγ production by mononuclear cells in lung-draining LN and MOMP-specific IgA in BAL.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND:Chlamydia trachomatis is a major cause of sexually transmitted disease in humans. Previous studies in both humans and animal models of chlamydial genital tract infection have suggested that the hormonal status of the genital tract epithelium at the time of exposure can influence the outcome of the chlamydial infection. We performed a whole genome transcriptional profiling study of C. trachomatis infection in ECC-1 cells under progesterone or estradiol treatment.RESULTS:Both hormone treatments caused a significant shift in the sub-set of genes expressed (25% of the transcriptome altered by more than 2-fold). Overall, estradiol treatment resulted in the down-regulation of 151 genes, including those associated with lipid and nucleotide metabolism. Of particular interest was the up-regulation in estradiol-supplemented cultures of six genes (omcB, trpB, cydA, cydB, pyk and yggV), which suggest a stress response similar to that reported previously in other models of chlamydial persistence. We also observed morphological changes consistent with a persistence response. By comparison, progesterone supplementation resulted in a general up-regulation of an energy utilising response.CONCLUSION:Our data shows for the first time, that the treatment of chlamydial host cells with key reproductive hormones such as progesterone and estradiol, results in significantly altered chlamydial gene expression profiles. It is likely that these chlamydial expression patterns are survival responses, evolved by the pathogen to enable it to overcome the host's innate immune response. The induction of chlamydial persistence is probably a key component of this survival response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chlamydial infections of humans can cause blindness and infertility as a result of diseases such as keratoconjunctivitis (trachoma), urethritis and cervicitis. However, in greater than half of all chlamydial diseases in males and females there are no signs or symptoms of infection. Chlamydia trachomatis is the causative bacterial organism responsible for the global estimate of 40.6 million people currently suffering with active trachoma and for the five million new cases of sexually transmitted infections each year in the United States of America. Even though antibiotics are available to treat Chlamydia, the incidence of each of these primarily asymptomatic infections continues to increase. In this Chapter we review the current knowledge of C.trachomatis including clinicial diseases and sequelae, the chlamydial developmental cycle in vivo, immunobiology and immune responses to infections, chlamydial genomics and vaccine development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Chlamydia pecorum is an obligate intracellular bacterium and the causative agent of reproductive and ocular disease in several animal hosts including koalas, sheep, cattle and goats. C. pecorum strains detected in koalas are genetically diverse, raising interesting questions about the origin and transmission of this species within koala hosts. While the ompA gene remains the most widely-used target in C. pecorum typing studies, it is generally recognised that surface protein encoding genes are not suited for phylogenetic analysis and it is becoming increasingly apparent that the ompA gene locus is not congruent with the phylogeny of the C. pecorum genome. Using the recently sequenced C. pecorum genome sequence (E58), we analysed 10 genes, including ompA, to evaluate the use of ompA as a molecular marker in the study of koala C. pecorum genetic diversity. Results Three genes (incA, ORF663, tarP) were found to contain sufficient nucleotide diversity and discriminatory power for detailed analysis and were used, with ompA, to genotype 24 C. pecorum PCR-positive koala samples from four populations. The most robust representation of the phylogeny of these samples was achieved through concatenation of all four gene sequences, enabling the recreation of a "true" phylogenetic signal. OmpA and incA were of limited value as fine-detailed genetic markers as they were unable to confer accurate phylogenetic distinctions between samples. On the other hand, the tarP and ORF663 genes were identified as useful "neutral" and "contingency" markers respectively, to represent the broad evolutionary history and intra-species genetic diversity of koala C. pecorum. Furthermore, the concatenation of ompA, incA and ORF663 sequences highlighted the monophyletic nature of koala C. pecorum infections by demonstrating a single evolutionary trajectory for koala hosts that is distinct from that seen in non-koala hosts. Conclusions While the continued use of ompA as a fine-detailed molecular marker for epidemiological analysis appears justified, the tarP and ORF663 genes also appear to be valuable markers of phylogenetic or biogeographic divisions at the C. pecorum intra-species level. This research has significant implications for future typing studies to understand the phylogeny, genetic diversity, and epidemiology of C. pecorum infections in the koala and other animal species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DegP, a member of the HtrA family of proteins, conducts critical bacterial protein quality control by both chaperone and proteolysis activities. The regulatory mechanisms controlling these two distinct activities, however, are unknown. DegP activation is known to involve a unique mechanism of allosteric binding, conformational changes and oligomer formation. We have uncovered a novel role for the residues at the PDZ1:protease interface in oligomer formation specifically for chaperone substrates of Chlamydia trachomatis HtrA (DegP homolog). We have demonstrated that CtHtrA proteolysis could be activated by allosteric binding and oligomer formation. The PDZ1 activator cleft was required for the activation and oligomer formation. However, unique to CtHtrA was the critical role for residues at the PDZ1:protease interface in oligomer formation when the activator was an in vitro chaperone substrate. Furthermore, a potential in vivo chaperone substrate, the major outer membrane protein (MOMP) from Chlamydia, was able to activate CtHtrA and induce oligomer formation. Therefore, we have revealed novel residues involved in the activation of CtHtrA which are likely to have important in vivo implications for outer membrane protein assembly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chlamydial infections represent a major threat to the long-term survival of the koala and a successful vaccine would provide a valuable management tool. Vaccination however has the potential to enhance inflammatory disease in animals exposed to a natural infection prior to vaccination, a finding in early human and primate trials of whole cell vaccines to prevent trachoma. In the present study, we vaccinated both healthy koalas as well as clinically diseased koalas with a multi-subunit vaccine consisting of Chlamydia pecorum MOMP and NrdB mixed with immune stimulating complex as adjuvant. Following vaccination, there was no increase in inflammatory pathological changes in animals previously infected with Chlamydia. Strong antibody (including neutralizing antibodies) and lymphocyte proliferation responses were recorded in all vaccinated koalas, both healthy and clinically diseased. Vaccine induced antibodies specific for both vaccine antigens were observed not only in plasma but also in ocular secretions. Our data shows that an experimental chlamydial vaccine is safe to use in previously infected koalas, in that it does not worsen infection-associated lesions. Furthermore, the prototype vaccine is effective, as demonstrated by strong levels of neutralizing antibody and lymphocyte proliferation responses in both healthy and clinically diseased koalas. Collectively, this work illustrates the feasibility of developing a safe and effective Chlamydia vaccine as a tool for management of disease in wild koalas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chlamydia pneumoniae is an enigmatic human and animal pathogen. Originally discovered in association with acute human respiratory disease, it is now associated with a remarkably wide range of chronic diseases as well as having a cosmopolitan distribution within the animal kingdom. Molecular typing studies suggest that animal strains are ancestral to human strains and that C. pneumoniae crossed from animals to humans as the result of at least one relatively recent zoonotic event. Whole genome analyses appear to support this concept – the human strains are highly conserved whereas the single animal strain that has been fully sequenced has a larger genome with several notable differences. When compared to the other, better known chlamydial species that is implicated in human infection, Chlamydia trachomatis, C. pneumoniae demonstrates pertinent differences in its cell biology, development, and genome structure. Here, we examine the characteristic facets of C. pneumoniae biology, offering insights into the diversity and evolution of this silent and ancient pathogen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chlamydia continues to be a major pathogen of koalas. The bacterium is associated with ocular, respiratory and urogenital tract infections and a vaccine is considered the best option to limit the decline of mainland koala populations. Over the last 20 years, efforts to develop a chlamydial vaccine in humans have focussed on the use of the chlamydial major outer membrane protein (MOMP). Potential problems with the use of MOMP-based vaccines relate to the wide range of genetic diversity in its four variable domains. In the present study, we evaluated the immune response of koalas vaccinated with a MOMP-based C. pecorum vaccine formulated with genetically and serologically diverse MOMPs. Animals immunised with individual MOMPs developed strong antibody and lymphocyte proliferation responses to both homologous as well as heterologous MOMP proteins. Importantly, we also showed that vaccine induced antibodies which effectively neutralised various heterologous strains of koala C. pecorum in an in vitro assay. Finally, we also demonstrated that the immune responses in monovalent as well as polyvalent MOMP vaccine groups were able to recognise whole chlamydial elementary bodies, illustrating the feasibility of developing an effective MOMP based C. pecorum vaccine that could protect against a range of strains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Problem: Chlamydia trachomatis genital tract infections are easily treated with antibiotics, however the majority of infections are asymptomatic and therefore untreated, highlighting the need for a vaccine. Because most infections are asymptomatic, vaccination could potentially be administered to individuals who may have an acute infection at that time. In such individuals the effect of vaccination on the existing infection is unknown; however one potential outcome could be the development of a persistent infection. In vitro chlamydial persistence has been well characterized in various strains, however there have been no reported studies in C. muridarum. Method of Study: We performed ultrastructural characterization, and transcriptome analysis of selected genes. We then used the transcriptional profiles of the selected genes to examine whether intranasal immunization of mice during an active genital infection would induce persistence in the upper reproductive tract of female mice. Results and Conclusions: We found that persistence developed in the oviducts of mice as a result of immunization. This is a significant finding, not only because it is the first time that C. muridarum persistence has been characterized in vitro, but also due to the fact that there is minimal characterization of in vivo persistence of any chlamydial species. This highlights the importance of the timing of vaccination in individuals.