999 resultados para CHERN-SIMONS TERM
Resumo:
We study Chern-Simons theory on 3-manifolds M that are circle-bundles over 2-dimensional orbifolds Σ by the method of Abelianisation. This method, which completely sidesteps the issue of having to integrate over the moduli space of non-Abelian flat connections, reduces the complete partition function of the non-Abelian theory on M to a 2-dimensional Abelian theory on the orbifold Σ, which is easily evaluated.
Resumo:
In this Letter, we apply the proper-time method to generate the Lorentz-violating Chern-Simons terms in the four-dimensional Yang-Mills and non-linearized gravity theories. It is shown that the coefficient of the induced Chern-Simons term is finite but regularization dependent. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Here we study the effect of the nonminimal coupling j(mu)epsilon(munualpha)partial derivative(nu)A(alpha) on the static potential in multiflavor QED(3). Both cases of four and two components fermions are studied separately at leading order in the 1/N expansion. Although a nonlocal Chern-Simons term appears, in the four components case the photon is still massless leading to a confining logarithmic potential similar to the classical one. In the two components case, as expected, the parity breaking fermion mass term generates a traditional Chern-Simons term which makes the photon massive and we have a screening potential which vanishes at large intercharge distance. The extra nonminimal couplings have no important influence on the static potential at large intercharge distances. However, interesting effects show up at finite distances. In particular, for strong enough nonminimal coupling we may have a new massive pole in the photon propagator, while in the opposite limit there may be no poles at all in the irreducible case. We also found that, in general, the nonminimal couplings lead to a finite range repulsive force between charges of opposite signs.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A prescription for computing the propagator for D-dimensional higher-derivative gravity theories, based on the Barnes-Rivers operators, is presented. A systematic study of the tree-level unitarity of these theories is developed and the agreement of their linearized versions with Newton's law is investigated by computing the corresponding effective nonrelativistic potential. Three-dimensional quadratic gravity with a gravitational Chern-Simons term is also analyzed. A discussion on the issue of light bending within the framework of both D-dimensional quadratic gravity and three-dimensional quadratic gravity with a Chern-Simons term is provided as well. (C) 2002 American Institute of Physics.
Resumo:
The problem of computing the effective nonrelativistic potential U-D for the interaction of charged-scalar bosons, within the context of D-dimensional electromagnetism with a cutoff, is reduced to quadratures. It is shown that U-3 cannot bind a pair of identical charged-scalar bosons; nevertheless, numerical calculations indicate that boson-boson bound states do exist in the framework of three-dimensional higher-derivative electromagnetism augmented by a topological Chern-Simons term.
Resumo:
Massive gravity models in (2 + 1) dimensions, such as those obtained by adding to Einstein's gravity the usual Fierz-Pauli, or the more complicated Ricci scalar squared (R-2), terms, are tree level unitary. Interesting enough these seemingly harmless systems have their unitarity spoiled when they are augmented by a Chern-Simons term. Furthermore, if the massive topological term is added to R + R-munu(2) gravity, or to R + R-munu(2), + R-2 gravity (higher-derivative gravity), which are nonunitary at the tree level, the resulting models remain nonunitary. Therefore, unlike the common belief, as well as the claims in the literature, the coexistence between three-dimensional massive gravity models and massive topological terms is conflicting.
Resumo:
We introduce a master action in non-commutative space, out of which we obtain the action of the non-commutative Maxwell-Chern-Simons theory. Then, we look for the corresponding dual theory at both first and second order in the non-commutative parameter. At the first order, the dual theory happens to be, precisely, the action obtained from the usual commutative self-dual model by generalizing the Chern-Simons term to its non-commutative version, including a cubic term. Since this resulting theory is also equivalent to the non-commutative massive Thirring model in the large fermion mass limit, we remove, as a byproduct, the obstacles arising in the generalization to non-commutative space, and to the first non-trivial order in the non-commutative parameter, of the bosonization in three dimensions. Then, performing calculations at the second order in the non-commutative parameter, we explicitly compute a new dual theory which differs from the non-commutative self-dual model and, further, differs also from other previous results and involves a very simple expression in terms of ordinary fields. In addition, a remarkable feature of our results is that the dual theory is local, unlike what happens in the non-Abelian, but commutative case. We also conclude that the generalization to non-commutative space of bosonization in three dimensions is possible only when considering the first non-trivial corrections over ordinary space.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Here we compute the static potential in scalar QED(3) at leading order in 1/Nf. We show that the addition of a non-minimal coupling of Pauli-type (is an element of(mu nu alpha)j(mu)partial derivative(nu)A(alpha)), although it breaks parity, it does not change the analytic structure of the photon propagator and consequently the static potential remains logarithmic ( confining) at large distances. The non-minimal coupling modifies the potential, however, at small charge separations giving rise to a repulsive force of short range between opposite sign charges, which is relevant for the existence of bound states. This effect is in agreement with a previous calculation based on Moller scattering, but differently from such calculation we show here that the repulsion appears independently of the presence of a tree level Chern-Simons term which rather affects the large distance behaviour of the potential turning it into a constant.
Resumo:
We study the presence of symmetry transformations in the Faddeev-Jackiw approach for constrained systems. Our analysis is based in the case of a particle submitted to a particular potential which depends on an arbitrary function. The method is implemented in a natural way and symmetry generators are identified. These symmetries permit us to obtain the absent elements of the sympletic matrix which complement the set of Dirac brackets of such a theory. The study developed here is applied in two different dual models. First, we discuss the case of a two-dimensional oscillator interacting with an electromagnetic potential described by a Chern-Simons term and second the Schwarz-Sen gauge theory, in order to obtain the complete set of non-null Dirac brackets and the correspondent Maxwell electromagnetic theory limit. ©1999 The American Physical Society.
Resumo:
We consider the (2 + 1)-dimensional massive Thirring model as a gauge theory, with one-fermion flavor, in the framework of the causal perturbation theory and address the problem of dynamical mass generation for the gauge boson. In this context we obtain an unambiguous expression for the coefficient of the induced Chern-Simons term.
Resumo:
Non-abelian gauge theories are super-renormalizable in 2+1 dimensions and suffer from infrared divergences. These divergences can be avoided by adding a Chern-Simons term, i.e., building a Topologically Massive Theory. In this sense, we are interested in the study of the Topologically Massive Yang-Mills theory on the Null-Plane. Since this is a gauge theory, we need to analyze its constraint structure which is done with the Hamilton-Jacobi formalism. We are able to find the complete set of Hamiltonian densities, and build the Generalized Brackets of the theory. With the GB we obtain a set of involutive Hamiltonian densities, generators of the evolution of the system. © 2010 American Institute of Physics.
Resumo:
Pós-graduação em Física - FEG
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)