947 resultados para CHAOTIC SYNCHRONIZATION
Resumo:
We consider a general coupling of two identical chaotic dynamical systems, and we obtain the conditions for synchronization. We consider two types of synchronization: complete synchronization and delayed synchronization. Then, we consider four different couplings having different behaviors regarding their ability to synchronize either completely or with delay: Symmetric Linear Coupled System, Commanded Linear Coupled System, Commanded Coupled System with delay and symmetric coupled system with delay. The values of the coupling strength for which a coupling synchronizes define its Window of synchronization. We obtain analytically the Windows of complete synchronization, and we apply it for the considered couplings that admit complete synchronization. We also obtain analytically the Window of chaotic delayed synchronization for the only considered coupling that admits a chaotic delayed synchronization, the commanded coupled system with delay. At last, we use four different free chaotic dynamics (based in tent map, logistic map, three-piecewise linear map and cubic-like map) in order to observe numerically the analytically predicted windows.
Resumo:
Many data have been useful to describe the growth of marine mammals, invertebrates and reptiles, seabirds, sea turtles and fishes, using the logistic, the Gom-pertz and von Bertalanffy's growth models. A generalized family of von Bertalanffy's maps, which is proportional to the right hand side of von Bertalanffy's growth equation, is studied and its dynamical approach is proposed. The system complexity is measured using Lyapunov exponents, which depend on two biological parameters: von Bertalanffy's growth rate constant and the asymptotic weight. Applications of synchronization in real world is of current interest. The behavior of birds ocks, schools of fish and other animals is an important phenomenon characterized by synchronized motion of individuals. In this work, we consider networks having in each node a von Bertalanffy's model and we study the synchronization interval of these networks, as a function of those two biological parameters. Numerical simulation are also presented to support our approaches.
Resumo:
We consider a general coupling of two identical chaotic dynamical systems, and we obtain the conditions for synchronization. We consider two types of synchronization: complete synchronization and delayed synchronization. Then, we consider four different couplings having different behaviors regarding their ability to synchronize either completely or with delay: Symmetric Linear Coupled System, Commanded Linear Coupled System, Commanded Coupled System with delay and symmetric coupled system with delay. The values of the coupling strength for which a coupling synchronizes define its Window of synchronization. We obtain analytically the Windows of complete synchronization, and we apply it for the considered couplings that admit complete synchronization. We also obtain analytically the Window of chaotic delayed synchronization for the only considered coupling that admits a chaotic delayed synchronization, the commanded coupled system with delay. At last, we use four different free chaotic dynamics (based in tent map, logistic map, three-piecewise linear map and cubic-like map) in order to observe numerically the analytically predicted windows.
Resumo:
We analyze the emergence of synchronization in a population of moving integrate-and-fire oscillators. Oscillators, while moving on a plane, interact with their nearest neighbor upon firing time. We discover a nonmonotonic dependence of the synchronization time on the velocity of the agents. Moreover, we find that mechanisms that drive synchronization are different for different dynamical regimes. We report the extreme situation where an interplay between the time scales involved in the dynamical processes completely inhibits the achievement of a coherent state. We also provide estimators for the transitions between the different regimes.
Resumo:
We study a Kuramoto model in which the oscillators are associated with the nodes of a complex network and the interactions include a phase frustration, thus preventing full synchronization. The system organizes into a regime of remote synchronization where pairs of nodes with the same network symmetry are fully synchronized, despite their distance on the graph. We provide analytical arguments to explain this result, and we show how the frustration parameter affects the distribution of phases. An application to brain networks suggests that anatomical symmetry plays a role in neural synchronization by determining correlated functional modules across distant locations.
Resumo:
A simple chaotic flow is presented, which when driven by an identical copy of itself, for certain initial conditions, is able to display generalized synchronization instead of identical synchronization. Being that the drive and the response are observed in exactly the same coordinate system, generalized synchronization is demonstrated by means of the auxiliary system approach and by the conditional Lyapunov spectrum. This is interpreted in terms of changes in the structure of the system stationary points, caused by the coupling, which modify its global behavior.
Resumo:
Nonlinear dynamics of laser systems has become an interesting area of research in recent times. Lasers are good examples of nonlinear dissipative systems showing many kinds of nonlinear phenomena such as chaos, multistability and quasiperiodicity. The study of these phenomena in lasers has fundamental scientific importance since the investigations on these effects reveal many interesting features of nonlinear effects in practical systems. Further, the understanding of the instabilities in lasers is helpful in detecting and controlling such effects. Chaos is one of the most interesting phenomena shown by nonlinear deterministic systems. It is found that, like many nonlinear dissipative systems, lasers also show chaos for certain ranges of parameters. Many investigations on laser chaos have been done in the last two decades. The earlier studies in this field were concentrated on the dynamical aspects of laser chaos. However, recent developments in this area mainly belong to the control and synchronization of chaos. A number of attempts have been reported in controlling or suppressing chaos in lasers since lasers are the practical systems aimed to operated in stable or periodic mode. On the other hand, laser chaos has been found to be applicable in high speed secure communication based on synchronization of chaos. Thus, chaos in laser systems has technological importance also. Semiconductor lasers are most applicable in the fields of optical communications among various kinds of laser due to many reasons such as their compactness, reliability modest cost and the opportunity of direct current modulation. They show chaos and other instabilities under various physical conditions such as direct modulation and optical or optoelectronic feedback. It is desirable for semiconductor lasers to have stable and regular operation. Thus, the understanding of chaos and other instabilities in semiconductor lasers and their xi control is highly important in photonics. We address the problem of controlling chaos produced by direct modulation of laser diodes. We consider the delay feedback control methods for this purpose and study their performance using numerical simulation. Besides the control of chaos, control of other nonlinear effects such as quasiperiodicity and bistability using delay feedback methods are also investigated. A number of secure communication schemes based on synchronization of chaos semiconductor lasers have been successfully demonstrated theoretically and experimentally. The current investigations in these field include the study of practical issues on the implementations of such encryption schemes. We theoretically study the issues such as channel delay, phase mismatch and frequency detuning on the synchronization of chaos in directly modulated laser diodes. It would be helpful for designing and implementing chaotic encryption schemes using synchronization of chaos in modulated semiconductor laser
Resumo:
Nonlinear dynamics has emerged into a prominent area of research in the past few Decades.Turbulence, Pattern formation,Multistability etc are some of the important areas of research in nonlinear dynamics apart from the study of chaos.Chaos refers to the complex evolution of a deterministic system, which is highly sensitive to initial conditions. The study of chaos theory started in the modern sense with the investigations of Edward Lorentz in mid 60's. Later developments in this subject provided systematic development of chaos theory as a science of deterministic but complex and unpredictable dynamical systems. This thesis deals with the effect of random fluctuations with its associated characteristic timescales on chaos and synchronization. Here we introduce the concept of noise, and two familiar types of noise are discussed. The classifications and representation of white and colored noise are introduced. Based on this we introduce the concept of randomness that we deal with as a variant of the familiar concept of noise. The dynamical systems introduced are the Rossler system, directly modulated semiconductor lasers and the Harmonic oscillator. The directly modulated semiconductor laser being not a much familiar dynamical system, we have included a detailed introduction to its relevance in Chaotic encryption based cryptography in communication. We show that the effect of a fluctuating parameter mismatch on synchronization is to destroy the synchronization. Further we show that the relation between synchronization error and timescales can be found empirically but there are also cases where this is not possible. Studies show that under the variation of the parameters, the system becomes chaotic, which appears to be the period doubling route to chaos.
Resumo:
The main goal of this thesis is to study the dynamics of Josephson junction system in the presence of an external rf-biasing.A system of two chaotically synchronized Josephson junction is studied.The change in the dynamics of the system in the presence of at phase difference between the applied fields is considered. Control of chaos is very important from an application point of view. The role Of phase difference in controlling chaos is discussed.An array of three Josephson junctions iS studied for the effect of phase difference on chaos and synchronization and the argument is extended for a system of N Josephson junctions. In the presence of a phase difference between the external fields, the system exhibits periodic behavior with a definite phase relationship between all the three junctions.Itdeals with an array of three Josephson junctions with a time delay in the coupling term. It is observed that only the outer systems synchronize while the middle system remain uncorrelated with t-he other two. The effect of phase difference between the applied fields and time-delay on system dynamics and synchronization is also studied. We study the influence of an applied ac biasing on a serniannular Josephson junction. It is found the magnetic field along with the biasing induces creation and annihilation of fluxons in the junction. The I-V characteristics of the junction is studied by considering the surface loss term also in the model equation. The system is found to exhibit chaotic behavior in the presence of ac biasing.
Resumo:
It has been shown recently that systems driven with random pulses show the signature of chaos ,even without non linear dynamics.This shows that the relation between randomness and chaos is much closer than it was understood earlier .The effect of random perturbations on synchronization can be also different. In some cases identical random perturbations acting on two different chaotic systems induce synchronizations. However most commonly ,the effect of random fluctuations on the synchronizations of chaotic system is to destroy synchronization. This thesis deals with the effect of random fluctuations with its associated characteristic timescales on chaos and synchronization. The author tries to unearth yet another manifestation of randomness on chaos and sychroniztion. This thesis is organized into six chapters.
Resumo:
In this series of papers, we study issues related to the synchronization of two coupled chaotic discrete systems arising from secured communication. The first part deals with uniform dissipativeness with respect to parameter variation via the Liapunov direct method. We obtain uniform estimates of the global attractor for a general discrete nonautonomous system, that yields a uniform invariance principle in the autonomous case. The Liapunov function is allowed to have positive derivative along solutions of the system inside a bounded set, and this reduces substantially the difficulty of constructing a Liapunov function for a given system. In particular, we develop an approach that incorporates the classical Lagrange multiplier into the Liapunov function method to naturally extend those Liapunov functions from continuous dynamical system to their discretizations, so that the corresponding uniform dispativeness results are valid when the step size of the discretization is small. Applications to the discretized Lorenz system and the discretization of a time-periodic chaotic system are given to illustrate the general results. We also show how to obtain uniform estimation of attractors for parametrized linear stable systems with nonlinear perturbation.
Resumo:
We consider the problem of stability and duration of the synchronization process between self-excited oscillators, both in their regular and chaotic states. Making use of the properties of Hill equation describing the deviation between the slave and the master, we derive the stability conditions and expressions of the synchronization time. A fairly good agreement is obtained between the analytical and numerical results.
Resumo:
Here we present a system of coupled phase oscillators with nearest neighbors coupling, which we study for different boundary conditions. We concentrate at the transition to the total synchronization. We are able to develop exact solutions for the value of the coupling parameter when the system becomes completely synchronized, for the case of periodic boundary conditions as well as for a chain with fixed ends. We compare the results with those calculated numerically.
Resumo:
We investigated the transition to wave turbulence in a spatially extended three-wave interacting model, where a spatially homogeneous state undergoing chaotic dynamics undergoes spatial mode excitation. The transition to this weakly turbulent state can be regarded as the loss of synchronization of chaos of mode oscillators describing the spatial dynamics.
Resumo:
A new method to obtain digital chaos synchronization between two systems is reported. It is based on the use of Optically Programmable Logic Cells as chaos generators. When these cells are feedbacked, periodic and chaotic behaviours are obtained. They depend on the ratio between internal and external delay times. Chaos synchronization is obtained if a common driving signal feeds both systems. A control to impose the same boundary conditions to both systems is added to the emitter. New techniques to analyse digital chaos are presented. The main application of these structures is to obtain secure communications in optical networks.