967 resultados para CHANDRASEKHAR MASS MODELS
Resumo:
A process-oriented modeling approach is applied in order to simulate glacier mass balance for individual glaciers using statistically downscaled general circulation models (GCMs). Glacier-specific seasonal sensitivity characteristics based on a mass balance model of intermediate complexity are used to simulate mass balances of Nigardsbreen (Norway) and Rhonegletscher (Switzerland). Simulations using reanalyses (ECMWF) for the period 1979–93 are in good agreement with in situ mass balance measurements for Nigardsbreen. The method is applied to multicentury integrations of coupled (ECHAM4/OPYC) and mixed-layer (ECHAM4/MLO) GCMs excluding external forcing. A high correlation between decadal variations in the North Atlantic oscillation (NAO) and mass balance of the glaciers is found. The dominant factor for this relationship is the strong impact of winter precipitation associated with the NAO. A high NAO phase means enhanced (reduced) winter precipitation for Nigardsbreen (Rhonegletscher), typically leading to a higher (lower) than normal annual mass balance. This mechanism, entirely due to internal variations in the climate system, can explain observed strong positive mass balances for Nigardsbreen and other maritime Norwegian glaciers within the period 1980–95. It can also partly be responsible for recent strong negative mass balances of Alpine glaciers.
Resumo:
The mixing of floes of different thickness caused by repeated deformation of the ice cover is modeled as diffusion, and the mass balance equation for sea ice accounting for mass diffusion is developed. The effect of deformational diffusion on the ice thickness balance is shown to reach 1% of the divergence effect, which describes ridging and lead formation. This means that with the same accuracy the mass balance equation can be written in terms of mean velocity rather than mean mass-weighted velocity, which one should correctly use for a multicomponent fluid such as sea ice with components identified by floe thickness. Mixing (diffusion) of sea ice also occurs because of turbulent variations in wind and ocean drags that are unresolved in models. Estimates of the importance of turbulent mass diffusion on the dynamic redistribution of ice thickness are determined using empirical data for the turbulent diffusivity. For long-time-scale prediction (≫5 days), where unresolved atmospheric motion may have a length scale on the order of the Arctic basin and the time scale is larger than the synoptic time scale of atmospheric events, turbulent mass diffusion can exceed 10% of the divergence effect. However, for short-time-scale prediction, for example, 5 days, the unresolved scales are on the order of 100 km, and turbulent diffusion is about 0.1% of the divergence effect. Because inertial effects are small in the dynamics of the sea ice pack, diffusive momentum transfer can be disregarded.
Resumo:
VAMP (variable-mass particle) scenarios, in which the mass of the cold dark matter particles is a function of the scalar field responsible for the present acceleration of the Universe, have been proposed as a solution to the cosmic coincidence problem, since in the attractor regime both dark energy and dark matter scale in the same way. We find that only a narrow region in parameter space leads to models with viable values for the Hubble constant and dark energy density today. In the allowed region, the dark energy density starts to dominate around the present epoch and consequently such models cannot solve the coincidence problem. We show that the age of the Universe in this scenario is considerably higher than the age for noncoupled dark energy models, and conclude that more precise independent measurements of the age of the Universe would be useful in distinguishing between coupled and noncoupled dark energy models.
Resumo:
We combine results from searches by the CDF and D0 collaborations for a standard model Higgs boson (H) in the process gg -> H -> W+W- in p (p) over bar collisions at the Fermilab Tevatron Collider at root s = 1.96 TeV. With 4.8 fb(-1) of integrated luminosity analyzed at CDF and 5.4 fb(-1) at D0, the 95% confidence level upper limit on sigma(gg -> H) x B(H -> W+W-) is 1.75 pb at m(H) = 120 GeV, 0.38 pb at m(H) = 165 GeV, and 0.83 pb at m(H) = 200 GeV. Assuming the presence of a fourth sequential generation of fermions with large masses, we exclude at the 95% confidence level a standard-model-like Higgs boson with a mass between 131 and 204 GeV.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Recently a Minimal and an Ultraminimal Technicolor models were proposed where the presence of TC fermions in other representations than the fundamental one led to viable models without conflict with the known value for the measured S parameter. In this work we apply the results of [5] to compute the masses of the Higgs boson in the case of the Minimal and Ultraminimal Technicolor models. © 2010 American Institute of Physics.
Resumo:
Based on astrophysical constraints derived from Chandrasekhar's mass limit for white dwarfs, we study the effects of the model on the parameters of unparticle-inspired gravity, on scales Lambda(U) > 1 TeV and d(U) approximate to 1.
Resumo:
Context. Planet formation models have been developed during the past years to try to reproduce what has been observed of both the solar system and the extrasolar planets. Some of these models have partially succeeded, but they focus on massive planets and, for the sake of simplicity, exclude planets belonging to planetary systems. However, more and more planets are now found in planetary systems. This tendency, which is a result of radial velocity, transit, and direct imaging surveys, seems to be even more pronounced for low-mass planets. These new observations require improving planet formation models, including new physics, and considering the formation of systems. Aims: In a recent series of papers, we have presented some improvements in the physics of our models, focussing in particular on the internal structure of forming planets, and on the computation of the excitation state of planetesimals and their resulting accretion rate. In this paper, we focus on the concurrent effect of the formation of more than one planet in the same protoplanetary disc and show the effect, in terms of architecture and composition of this multiplicity. Methods: We used an N-body calculation including collision detection to compute the orbital evolution of a planetary system. Moreover, we describe the effect of competition for accretion of gas and solids, as well as the effect of gravitational interactions between planets. Results: We show that the masses and semi-major axes of planets are modified by both the effect of competition and gravitational interactions. We also present the effect of the assumed number of forming planets in the same system (a free parameter of the model), as well as the effect of the inclination and eccentricity damping. We find that the fraction of ejected planets increases from nearly 0 to 8% as we change the number of embryos we seed the system with from 2 to 20 planetary embryos. Moreover, our calculations show that, when considering planets more massive than ~5 M⊕, simulations with 10 or 20 planetary embryos statistically give the same results in terms of mass function and period distribution.
Resumo:
Although deterministic models of the evolution of mass tourism coastal resorts predict an almost inevitable decline over time, theoretical frameworks of the evolution and restructuring policies of mature destinations should be revised to reflect the complex and dynamic way in which these destinations evolve and interact with the tourism market and global socio-economic environment. The present study examines Benidorm because its urban and tourism model and large-scale tourism supply and demand make it one of the most unique destinations on the Mediterranean coast. The investigation reveals the need to adopt theories and models that are not purely deterministic. The dialectic interplay between external factors and the internal factors inherent in this destination simultaneously reveals a complex and diverse stage of maturity and the ability of destinations to create their own future.
Resumo:
Oxidised biomolecules in aged tissue could potentially be used as biomarkers for age-related diseases; however, it is still unclear whether they causatively contribute to ageing or are consequences of the ageing process. To assess the potential of using protein oxidation as markers of ageing, mass spectrometry (MS) was employed for the identification and quantification of oxidative modifications in obese (ob/ob) mice. Lean muscle mass and strength is reduced in obesity, representing a sarcopenic model in which the levels of oxidation can be evaluated for different muscular systems including calcium homeostasis, metabolism and contractility. Several oxidised residues were identified by tandem MS (MS/MS) in both muscle homogenate and isolated sarcoplasmic reticulum (SR), an organelle that regulates intracellular calcium levels in muscle. These modifications include oxidation of methionine, cysteine, tyrosine, and tryptophan in several proteins such as sarcoplasmic reticulum calcium ATPase (SERCA), glycogen phosphorylase, and myosin. Once modifications had been identified, multiple reaction monitoring MS (MRM) was used to quantify the percentage modification of oxidised residues within the samples. Preliminary data suggests proteins in ob/ob mice are more oxidised than the controls. For example SERCA, which constitutes 60-70% of the SR, had approximately a 2-fold increase in cysteine trioxidation of Cys561 in the obese model when compared to the control. Other obese muscle proteins have also shown a similar increase in oxidation for various residues. Further analysis with complex protein mixtures will determine the potential diagnostic use of MRM experiments for analysing protein oxidation in small biological samples such as muscle needle biopsies.
Resumo:
Mass Customization (MC) is not a mature business strategy and hence it is not clear that a single or small group of operational models are dominating. Companies tend to approach MC from either a mass production or a customization origin and this in itself gives reason to believe that several operational models will be observable. This paper reviews actual and theoretical fulfilment systems that enterprises could apply when offering a pre-engineered catalogue of customizable products and options. Issues considered are: How product flows are structured in relation to processes, inventories and decoupling point(s); - Characteristics of the OF process that inhibit or facilitate fulfilment; - The logic of how products are allocated to customers; - Customer factors that influence OF process design and operation. Diversity in the order fulfilment structures is expected and is found in the literature. The review has identified four structural forms that have been used in a Catalogue MC context: - fulfilment from stock; - fulfilment from a single fixed decoupling point; - fulfilment from one of several fixed decoupling points; - fulfilment from several locations, with floating decoupling points. From the review it is apparent that producers are being imaginative in coping with the demands of high variety, high volume, customization and short lead times. These demands have encouraged the relationship between product, process and customer to be re-examined. Not only has this strengthened interest in commonality and postponement, but, as is reported in the paper, has led to the re-engineering of the order fulfilment process to create models with multiple fixed decoupling points and the floating decoupling point system
Resumo:
We report the STAR measurements of dielectron (e(+)e(-)) production at midrapidity (|y(ee)|<1) in Au+Au collisions at √[s(NN)]=200 GeV. The measurements are evaluated in different invariant mass regions with a focus on 0.30-0.76 (ρ-like), 0.76-0.80 (ω-like), and 0.98-1.05 (ϕ-like) GeV/c(2). The spectrum in the ω-like and ϕ-like regions can be well described by the hadronic cocktail simulation. In the ρ-like region, however, the vacuum ρ spectral function cannot describe the shape of the dielectron excess. In this range, an enhancement of 1.77±0.11(stat)±0.24(syst)±0.33(cocktail) is determined with respect to the hadronic cocktail simulation that excludes the ρ meson. The excess yield in the ρ-like region increases with the number of collision participants faster than the ω and ϕ yields. Theoretical models with broadened ρ contributions through interactions with constituents in the hot QCD medium provide a consistent description of the dilepton mass spectra for the measurement presented here and the earlier data at the Super Proton Synchrotron energies.
Resumo:
Glucocorticoid (GC) therapies may adversely cause insulin resistance (IR) that lead to a compensatory hyperinsulinemia due to insulin hypersecretion. The increased β-cell function is associated with increased insulin signaling that has the protein kinase B (AKT) substrate with 160 kDa (AS160) as an important downstream AKT effector. In muscle, both insulin and AMP-activated protein kinase (AMPK) signaling phosphorylate and inactivate AS160, which favors the glucose transporter (GLUT)-4 translocation to plasma membrane. Whether AS160 phosphorylation is modulated in islets from GC-treated subjects is unknown. For this, two animal models, Swiss mice and Wistar rats, were treated with dexamethasone (DEX) (1 mg/kg body weight) for 5 consecutive days. DEX treatment induced IR, hyperinsulinemia, and dyslipidemia in both species, but glucose intolerance and hyperglycemia only in rats. DEX treatment caused increased insulin secretion in response to glucose and augmented β-cell mass in both species that were associated with increased islet content and increased phosphorylation of the AS160 protein. Protein AKT phosphorylation, but not AMPK phosphorylation, was found significantly enhanced in islets from DEX-treated animals. We conclude that the augmented β-cell function developed in response to the GC-induced IR involves inhibition of the islet AS160 protein activity.