920 resultados para CHAIN DEPOSITION DISEASE


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Extracellular deposition of amyloid fibrils is responsible for the pathology in the systemic amyloidoses and probably also in Alzheimer disease [Haass, C. & Selkoe, D. J. (1993) Cell 75, 1039-1042] and type II diabetes mellitus [Lorenzo, A., Razzaboni, B., Weir, G. C. & Yankner, B. A. (1994) Nature (London) 368, 756-760]. The fibrils themselves are relatively resistant to proteolysis in vitro but amyloid deposits do regress in vivo, usually with clinical benefit, if new amyloid fibril formation can be halted. Serum amyloid P component (SAP) binds to all types of amyloid fibrils and is a universal constituent of amyloid deposits, including the plaques, amorphous amyloid beta protein deposits and neurofibrillary tangles of Alzheimer disease [Coria, F., Castano, E., Prelli, F., Larrondo-Lillo, M., van Duinen, S., Shelanski, M. L. & Frangione, B. (1988) Lab. Invest. 58, 454-458; Duong, T., Pommier, E. C. & Scheibel, A. B. (1989) Acta Neuropathol. 78, 429-437]. Here we show that SAP prevents proteolysis of the amyloid fibrils of Alzheimer disease, of systemic amyloid A amyloidosis and of systemic monoclonal light chain amyloidosis and may thereby contribute to their persistence in vivo. SAP is not an enzyme inhibitor and is protective only when bound to the fibrils. Interference with binding of SAP to amyloid fibrils in vivo is thus an attractive therapeutic objective, achievement of which should promote regression of the deposits.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The vaccines 1-2 and V4 are avirulent strains of Newcastle disease virus. Organ tropism of strain V4 has been determined and the virus has a predilection for the digestive tract. Tropism of strain 1-2 has not yet been determined. The objective of this study was to determine the distribution of strain 1-2 in various body organs and fluids following vaccination in comparison with V4. Four-week-old chickens were vaccinated by eye drop separately with these two avirulent strains. Virus isolation and the reverse transcription-polymerase chain reaction technique were employed to detect 1-2 and V4 viruses in various tissues and body fluids for 7 days following vaccination. Tissues from the respiratory tract showed earlier positive signals than tissues from other organs for chickens vaccinated with strain 1-2. Conversely, tissues from mainly digestive tract produced earlier positive signals than from respiratory tract and other organs from chickens vaccinated with strain V4. In early infection, strain 1-2 had preferential predilection for the respiratory tract and strain V4 for the digestive tract. Later after vaccination, other organs showed positive results from chickens vaccinated with both 1-2 and V4 strains. The differences in organ tropism observed in this study suggest that 1-2 may perform better than V4 as a live vaccine strain.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

β-Amyloid (Aβ) deposition in regions of the temporal lobe in patients with dementia with Lewy bodies (DLB) was compared with elderly, non-demented (ND) cases and with Alzheimer's disease (AD). The distribution, density and clustering patterns of diffuse, primitive and classic Aβ deposits were similar in 'pure' DLB and ND cases. The distribution of Aβ deposits and the densities of the diffuse and primitive deposits were similar in 'mixed' DLB/AD cases compared with AD. However, the density of the classic deposits was significantly lower in DLB/AD compared with AD. In addition, the primitive Aβ deposits occurred more often in small, regularly spaced clusters in the tissue and less often in a single large cluster in DLB/AD compared with 'pure' AD. These results suggest that pure DLB and AD are distinct disorders which can coexist in some patients. However, the Aβ pathology of DLB/AD cases is not identical to that observed in patients with AD alone. (C) 2000 S. Karger AG, Basel.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The histological features of cases of variant Creutzfeldt-Jakob disease (vCJD) are often distributed in the brain in clusters. This study investigated the spatial associations between the clusters of the vacuoles, surviving neurons, and prion protein (PrP) deposits in various brain areas in 11 cases of vCJD. Clusters of vacuoles and surviving neurons were positively correlated in the cerebral cortex but negatively correlated in the dentate gyrus. Clusters of the florid and diffuse type of PrP deposit were not positively correlated with those of either the vacuoles or the surviving neurons although a negative correlation was observed between the florid plaques and surviving neurons in some cortical areas. Clusters of the florid and diffuse deposits were either negatively correlated or uncorrelated. These data suggest: 1) that clusters of vacuoles in the cerebral cortex are associated with the presence of surviving neuronal cell bodies, 2) that the clusters of vacuoles are not spatially related to those of the PrP deposits, and 3) different factors are involved in the pathogenesis of the florid and diffuse PrP deposits.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Vacuolation ('spongiform change') and prion protein (PrP) deposition were quantified in the cerebral cortex, hippocampus, dentate gyrus and molecular layer of the cerebellum in 11 cases of variant Creutzfeldt-Jakob disease (vCJD). The density of vacuoles was greater in the cerebral cortex compared to the hippocampus, dentate gyrus and cerebellum. Within the cortex, vacuole density was significantly greater in the occipital compared to the temporal lobe and the density of surviving neurones was greatest in the occipital lobe. The density of the non-florid PrP plaques was greater in the cerebellum compared to the other brain areas. There were significantly more florid-type PrP plaques in the cerebral cortex compared to the hippocampus and the molecular layer of the cerebellum. No significant correlations were observed between the densities of the vacuoles and the PrP plaques. The densities of vacuoles in the parietal cortex and the non-florid plaques in the frontal cortex were positively correlated with the density of surviving neurones. The densities of the florid and the non-florid plaques were positively correlated in the parietal cortex, occipital cortex, inferior temporal gyrus and dentate gyrus. The data suggest: (i) vacuolation throughout the cerebral cortex, especially in the occipital lobe, but less evident in the hippocampus and molecular layer of the cerebellum; (ii) the non-florid plaques are more common than the florid plaques and predominate in the molecular layer of the cerebellum; and (iii) either the florid plaques develop from the non-florid plaques or both types are morphological variants resulting from the same degenerative process.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The vacuolation (spongiform change) and prion protein (PrP) deposition were quantified in the cerebral cortex, hippocampus and cerebellum of 11 patients with sporadic Creutzfeldt-Jakob disease (CJD). The density of the vacuolation, averaged over patients, was greatest in the occipital cortex and cerebellum and least in the dentate gyrus. The degree of PrP deposition was similar in the different cortical areas and in the cerebellum but significantly lower in the hippocampus and absent in the dentate gyrus. There were no significant differences in the extent of the vacuolation and PrP deposition in the upper and lower cortical laminae. Vacuolation and PrP deposition in the upper cortex were both positively correlated with corresponding levels in the lower cortex. In addition, in the parietal cortex and parahippocampal gyrus, the density of the vacuolation was positively correlated with the level of PrP deposition but no such correlations were observed in the remaining areas studied. This quantitative study suggested that: (1) the pathological changes were most severe in the occipital cortex and cerebellum, while the hippocampus was least affected, (2) the pathological changes affect the upper and lower cortical laminae, and (3) the degree of correlation between the density of the vacuolation and PrP deposition may be dependent on brain region.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The density of diffuse, primitive, classic and compact β-amyloid (β/A4) deposits was estimated in the medial temporal lobe in elderly non-demented brains and in Alzheimer's disease (AD). In the non-demented cases, β/A4 deposits were absent in the hippocampus but in 8/14 cases they were present in the adjacent cortical regions. Variation in β/A4 deposition in the non-demented cases was large and overlapped with that of the AD cases. The ratio of mature to diffuse β/A4 deposits was greater in the non-demented than in the AD cases. In both the non-demented cases and AD, the β/A4 deposits were clustered with, in many tissues, a regular distribution of clusters along the cortex parallel to the pia. However, the mean cluster size of the deposits in the cortex was greater in AD than in the non-demented cases. These results suggest that the spread of β/A4 pathology between the modular units of the cortex and into the hippocampus could be important factors in the development of AD.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

β-amyloid (Aβ) deposition in the medial temporal lobe (MTL) was studied in elderly non-demented (ND) cases and in patients with Alzheimer's disease (AD). In AD, Aβ deposits were present throughout the MTL although density was less in the hippocampus than the adjacent cortical regions. In the ND cases, no Aβ deposits were recorded in 6 cases and in the remaining 8 cases, Aβ deposits were confined to the cortical regions adjacent to the hippocampus. The mean density of Aβ deposits in the cortical regions examined was greater in AD than in the ND cases but there was a significant overlap between the two groups. The ratio of mature to diffuse Aβ deposits was greater in the ND than the AD cases. In both patient groups, Aβ deposits formed clusters in the cortex and many tissues exhibited a regular distribution of clusters along the cortex parallel to the pia. The mean dimension of the Aβ clusters was greater in AD than in the ND cases. Hence, few aspects of Aβ deposition appeared to consistently separate AD from ND cases. However, the spread of Aβ pathology between modular units of the cortex and into regions of the hippocampus could be factors in the development of AD. © 1994.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The density of diffuse, primitive, classic and compact β-amyloid ( β A4) deposits was estimated in the hippocampus and adjacent gyri in human patients with Down's syndrome (DS) and sporadic Alzheimer's disease (AD). The objective of the study was to determine whether there were differences in β A4 deposition in DS and sporadic AD and whether these differences could be attributed to overexpression of the amyloid precursor gene (APP) in DS. Total β A4 deposit density was greater in DS than AD in all brain regions studied but the DS/AD density ratios varied between brain regions. In the majority of brain regions, the ratio of primitive to diffuse β A4 deposits was greater in DS but the ratio of classic to diffuse deposits was greater in AD. The data were consistent with the hypothesis that overexpression of the APP gene in DS may lead to increased β A4 deposition. However, local brain factors also appear to be important in β A4 deposition in DS. Overexpression of the APP gene may also be responsible for increased production of paired helical filaments (PHF) and result in enhanced formation of primitive β A4 deposits in DS. In addition, increased formation of classic deposits in AD suggests that factors necessary for the production of a compact amyloid core are enhanced in AD compared with DS. © 1994.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The density of the diffuse, primitive and classic beta-amyloid (Abeta) deposits and the incidence of large and small diameter blood vessels was studied in the upper laminae of the frontal cortex of 10 patients with sporadic Alzheimer’s disease (AD). The data were analysed using the partial correlation coefficient to determine whether variations in the density of Abeta deposit subtypes along the cortex were related to blood vessels. Significant correlations between the density of the diffuse or primitive Abeta deposits and blood vessels were found in only a small number of patients. However, the classic Abeta deposits were positively correlated with the large blood vessels in all 10 patients, the correlations remaining when the effects of gyral location and mutual correlations between Abeta deposits were removed. These results suggest that the larger blood vessels are involved specifically in the formation of the classic Abeta deposits and are less important in the formation of the diffuse and primitive deposits.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The density of diffuse, primitive, classic and compact βamyloid (Aβ deposits was estimated in regions of the medial temporal lobe (MTL) in 15 cases of late-onset sporadic Alzheimer's disease (AD) and 12 cases of Down's syndrome (DS). A similar pattern of Aβ deposition was observed in the MTL in the AD and DS cases with a reduced density of deposits in the hippocampus compared with the adjacent cortical regions. Total Aβ deposit density was greater in DS than in AD in all brain regions examined. This could be attributable to overexpression of the amyloid precursor protein gene. The ratio of the primitive to the diffuse Aβ deposits was greater in DS than in AD which suggests that the formation of mature amyloid deposits is enhanced in DS. The diffuse deposits exhibited a parabolic and the primitive deposits an inverted parabolic response with age in the DS cases. This suggests either that the diffuse and primitive deposits are sequentially related or that there are alternate pathways of Aβ deposition. © 1995 Informa UK Ltd All rights reserved: reproduction in whole or part not permitted.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

To determine the spatial pattern of ß-amyloid (Aß) deposition throughout the temporal lobe in Alzheimer's disease (AD). Methods: Sections of the complete temporal lobe from six cases of sporadic AD were immunolabelled with antibody against Aß. Fourier (spectral) analysis was used to identify sinusoidal patterns in the fluctuation of Aß deposition in a direction parallel to the pia mater or alveus. Results: Significant sinusoidal fluctuations in density were evident in 81/99 (82%) analyses. In 64% of analyses, two frequency components were present with density peaks of Aß deposits repeating every 500–1000 µm and at distances greater than 1000 µm. In 25% of analyses, three or more frequency components were present. The estimated period or wavelength (number of sample units to complete one full cycle) of the first and second frequency components did not vary significantly between gyri of the temporal lobe, but there was evidence that the fluctuations of the classic deposits had longer periods than the diffuse and primitive deposits. Conclusions: (i) Aß deposits exhibit complex sinusoidal fluctuations in density in the temporal lobe in AD; (ii) fluctuations in Aß deposition may reflect the formation of Aß deposits in relation to the modular and vascular structure of the cortex; and (iii) Fourier analysis may be a useful statistical method for studying the patterns of Aß deposition both in AD and in transgenic models of disease.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

To determine the factors influencing the distribution of -amyloid (Abeta) deposits in Alzheimer's disease (AD), the spatial patterns of the diffuse, primitive, and classic A deposits were studied from the superior temporal gyrus (STG) to sector CA4 of the hippocampus in six sporadic cases of the disease. In cortical gyri and in the CA sectors of the hippocampus, the Abeta deposits were distributed either in clusters 200-6400 microm in diameter that were regularly distributed parallel to the tissue boundary or in larger clusters greater than 6400 microm in diameter. In some regions, smaller clusters of Abeta deposits were aggregated into larger 'superclusters'. In many cortical gyri, the density of Abeta deposits was positively correlated with distance below the gyral crest. In the majority of regions, clusters of the diffuse, primitive, and classic deposits were not spatially correlated with each other. In two cases, double immunolabelled to reveal the Abeta deposits and blood vessels, the classic Abeta deposits were clustered around the larger diameter vessels. These results suggest a complex pattern of Abeta deposition in the temporal lobe in sporadic AD. A regular distribution of Abeta deposit clusters may reflect the degeneration of specific cortico-cortical and cortico-hippocampal pathways and the influence of the cerebral blood vessels. Large-scale clustering may reflect the aggregation of deposits in the depths of the sulci and the coalescence of smaller clusters.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The densities of diffuse, primitive, and classic ß-amyloid (Aß) deposits were studied in the temporal lobe in cognitively normal brain, dementia with Lewy bodies (DLB), familial Alzheimer’s disease (FAD), and sporadic AD (SAD). Principal components analysis (PCA) was used to determine whether there were distinct differences between groups or whether Aß pathology was more continuously distributed from group to group. Three principal components (PC) were extracted from the data accounting for 56% of the total variance. Plots of cases in relation to the PC did not result in distinct groups but suggested overlap in Aß deposition between the groups. In addition, there were linear correlations between the densities of Aß deposits and the distribution of the cases along the PC in specific brain regions suggesting continuous variation from group to group. PC1 was associated with the degree of maturation of Aß deposits, PC2 with differences between FAD and SAD, and PC3 with the degree of spread of Aß pathology into the hippocampus. Apolipoprotein E (APOE) genotype was not associated with variation in Aß deposition between cases. PCA may be a useful method of studying the pathological interface between closely related neurodegenerative disorders.