933 resultados para CELLULAR PRION


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The scrapie prion protein (PrPSc) is the major, and possibly the only, component of the infectious prion; it is generated from the cellular isoform (PrPC) by a conformational change. N-terminal truncation of PrPSc by limited proteolysis produces a protein of ≈142 residues designated PrP 27–30, which retains infectivity. A recombinant protein (rPrP) corresponding to Syrian hamster PrP 27–30 was expressed in Escherichia coli and purified. After refolding rPrP into an α-helical form resembling PrPC, the structure was solved by multidimensional heteronuclear NMR, revealing many structural features of rPrP that were not found in two shorter PrP fragments studied previously. Extensive side-chain interactions for residues 113–125 characterize a hydrophobic cluster, which packs against an irregular β-sheet, whereas residues 90–112 exhibit little defined structure. Although identifiable secondary structure is largely lacking in the N terminus of rPrP, paradoxically this N terminus increases the amount of secondary structure in the remainder of rPrP. The surface of a long helix (residues 200–227) and a structured loop (residues 165–171) form a discontinuous epitope for binding of a protein that facilitates PrPSc formation. Polymorphic residues within this epitope seem to modulate susceptibility of sheep and humans to prion disease. Conformational heterogeneity of rPrP at the N terminus may be key to the transformation of PrPC into PrPSc, whereas the discontinuous epitope near the C terminus controls this transition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The structural basis of species specificity of transmissible spongiform encephalopathies, such as bovine spongiform encephalopathy or “mad cow disease” and Creutzfeldt–Jakob disease in humans, has been investigated using the refined NMR structure of the C-terminal domain of the mouse prion protein with residues 121–231. A database search for mammalian prion proteins yielded 23 different sequences for the fragment 124–226, which display a high degree of sequence identity and show relevant amino acid substitutions in only 18 of the 103 positions. Except for a unique isolated negative surface charge in the bovine protein, the amino acid differences are clustered in three distinct regions of the three-dimensional structure of the cellular form of the prion protein. Two of these regions represent potential species-dependent surface recognition sites for protein–protein interactions, which have independently been implicated from in vitro and in vivo studies of prion protein transformation. The third region consists of a cluster of interior hydrophobic side chains that may affect prion protein transformation at later stages, after initial conformational changes in the cellular protein.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The expression of the cellular form of the prion protein (PrPc) gene is required for prion replication and neuroinvasion in transmissible spongiform encephalopathies. The identification of the cell types expressing PrPc is necessary to understanding how the agent replicates and spreads from peripheral sites to the central nervous system. To determine the nature of the cell types expressing PrPc, a green fluorescent protein reporter gene was expressed in transgenic mice under the control of 6.9 kb of the bovine PrP gene regulatory sequences. It was shown that the bovine PrP gene is expressed as two populations of mRNA differing by alternative splicing of one 115-bp 5′ untranslated exon in 17 different bovine tissues. The analysis of transgenic mice showed reporter gene expression in some cells that have been identified as expressing PrP, such as cerebellar Purkinje cells, lymphocytes, and keratinocytes. In addition, expression of green fluorescent protein was observed in the plexus of the enteric nervous system and in a restricted subset of cells not yet clearly identified as expressing PrP: the epithelial cells of the thymic medullary and the endothelial cells of both the mucosal capillaries of the intestine and the renal capillaries. These data provide valuable information on the distribution of PrPc at the cellular level and argue for roles of the epithelial and endothelial cells in the spread of infection from the periphery to the brain. Moreover, the transgenic mice described in this paper provide a model that will allow for the study of the transcriptional activity of the PrP gene promoter in response to scrapie infection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The N terminus of the scrapie isoform of prion protein (PrPSc) can be truncated without loss of scrapie infectivity and, correspondingly, the truncation of the N terminus of the cellular isoform, PrPC, still permits conversion into PrPSc. To assess whether additional segments of the PrP molecule can be deleted, we previously removed regions of putative secondary structure in PrPC; in the present study we found that deletion of each of the four predicted helices prevented PrPSc formation, as did deletion of the stop transfer effector region and the C178A mutation. Removal of a 36-residue loop between helices 2 and 3 did not prevent formation of protease-resistant PrP; the resulting scrapie-like protein, designated PrPSc106, contained 106 residues after cleavage of an N-terminal signal peptide and a C-terminal sequence for glycolipid anchor addition. Addition of the detergent Sarkosyl to cell lysates solubilized PrPSc106, which retained resistance to digestion by proteinase K. These results suggest that all the regions of proposed secondary structure in PrP are required for PrPSc formation, as is the disulfide bond stabilizing helices 3 and 4. The discovery of PrPSc106 should facilitate structural studies of PrPSc, investigations of the mechanism of PrPSc formation, and the production of PrPSc-specific antibodies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The NMR structures of the recombinant human prion protein, hPrP(23–230), and two C-terminal fragments, hPrP(90–230) and hPrP(121–230), include a globular domain extending from residues 125–228, for which a detailed structure was obtained, and an N-terminal flexibly disordered “tail.” The globular domain contains three α-helices comprising the residues 144–154, 173–194, and 200–228 and a short anti-parallel β-sheet comprising the residues 128–131 and 161–164. Within the globular domain, three polypeptide segments show increased structural disorder: i.e., a loop of residues 167–171, the residues 187–194 at the end of helix 2, and the residues 219–228 in the C-terminal part of helix 3. The local conformational state of the polypeptide segments 187–193 in helix 2 and 219–226 in helix 3 is measurably influenced by the length of the N-terminal tail, with the helical states being most highly populated in hPrP(23–230). When compared with the previously reported structures of the murine and Syrian hamster prion proteins, the length of helix 3 coincides more closely with that in the Syrian hamster protein whereas the disordered loop 167–171 is shared with murine PrP. These species variations of local structure are in a surface area of the cellular form of PrP that has previously been implicated in intermolecular interactions related both to the species barrier for infectious transmission of prion disease and to immune reactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The NMR structures of three single-amino acid variants of the C-terminal domain of the human prion protein, hPrP(121–230), are presented. In hPrP(M166V) and hPrP(R220K) the substitution is with the corresponding residue in murine PrP, and in hPrP(S170N) it is with the corresponding Syrian hamster residue. All three substitutions are in the surface region of the structure of the cellular form of PrP (PrPC) that is formed by the C-terminal part of helix 3, with residues 218–230, and a loop of residues 166–172. This molecular region shows high species variability and has been implicated in specific interactions with a so far not further characterized “protein X,” and it is related to the species barrier for transmission of prion diseases. As expected, the three variant hPrP(121–230) structures have the same global architecture as the previously determined wild-type bovine, human, murine, and Syrian hamster prion proteins, but with the present study two localized “conformational markers” could be related with single amino acid exchanges. These are the length and quality of definition of helix 3, and the NMR-observability of the residues in the loop 166–172. Poor definition of the C-terminal part of helix 3 is characteristic for murine PrP and has now been observed also for hPrP(R220K), and NMR observation of the complete loop 166–172 has so far been unique for Syrian hamster PrP and is now also documented for hPrP(S170N).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The prion diseases seem to be caused by a conformational change of the prion protein (PrP) from the benign cellular form PrPC to the infectious scrapie form PrPSc; thus, detailed information about PrP structure may provide essential insights into the mechanism by which these diseases develop. In this study, the secondary structure of the recombinant Syrian hamster PrP of residues 29–231 [PrP(29–231)] is investigated by multidimensional heteronuclear NMR. Chemical shift index analysis and nuclear Overhauser effect data show that PrP(29–231) contains three helices and possibly one short β-strand. Most striking is the random-coil nature of chemical shifts for residues 30–124 in the full-length PrP. Although the secondary structure elements are similar to those found in mouse PrP fragment PrP(121–231), the secondary structure boundaries of PrP(29–231) are different from those in mouse PrP(121–231) but similar to those found in the structure of Syrian hamster PrP(90–231). Comparison of resonance assignments of PrP(29–231) and PrP(90–231) indicates that there may be transient interactions between the additional residues and the structured core. Backbone dynamics studies done by using the heteronuclear [1H]-15N nuclear Overhauser effect indicate that almost half of PrP(29–231), residues 29–124, is highly flexible. This plastic region could feature in the conversion of PrPC to PrPSc by template-assisted formation of β-structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transmissible spongiform encephalopathies (TSEs) are lethal, infectious disorders of the mammalian nervous system. A TSE hallmark is the conversion of the cellular protein PrPC to disease-associated PrPSc (named for scrapie, the first known TSE). PrPC is protease-sensitive, monomeric, detergent soluble, and primarily α-helical; PrPSc is protease-resistant, polymerized, detergent insoluble, and rich in β-sheet. The “protein-only” hypothesis posits that PrPSc is the infectious TSE agent that directly converts host-encoded PrPC to fresh PrPSc, harming neurons and creating new agents of infection. To gain insight on the conformational transitions of PrP, we tested the ability of several protein chaperones, which supervise the conformational transitions of proteins in diverse ways, to affect conversion of PrPC to its protease-resistant state. None affected conversion in the absence of pre-existing PrPSc. In its presence, only two, GroEL and Hsp104 (heat shock protein 104), significantly affected conversion. Both promoted it, but the reaction characteristics of conversions with the two chaperones were distinct. In contrast, chemical chaperones inhibited conversion. Our findings provide new mechanistic insights into nature of PrP conversions, and provide a new set of tools for studying the process underlying TSE pathogenesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Under certain conditions, the prion protein (PrP) undergoes a conformational change from the normal cellular isoform, PrPC, to PrPSc, an infectious isoform capable of causing neurodegenerative diseases in many mammals. Conversion can be triggered by low pH, and in vivo this appears to take place in an endocytic pathway and/or caveolae-like domains. It has thus far been impossible to characterize the conformational change at high resolution by experimental methods. Therefore, to investigate the effect of acidic pH on PrP conformation, we have performed 10-ns molecular dynamics simulations of PrPC in water at neutral and low pH. The core of the protein is well maintained at neutral pH. At low pH, however, the protein is more dynamic, and the sheet-like structure increases both by lengthening of the native β-sheet and by addition of a portion of the N terminus to widen the sheet by another two strands. The side chain of Met-129, a polymorphic codon in humans associated with variant Creutzfeldt–Jakob disease, pulls the N terminus into the sheet. Neutralization of Asp-178 at low pH removes interactions that inhibit conversion, which is consistent with the Asp-178–Asn mutation causing human prion diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The key event in prion diseases seems to be the conversion of the prion protein PrP from its normal cellular isoform (PrPC) to an aberrant “scrapie” isoform (PrPSc). Earlier studies have detected no covalent modification in the scrapie isoform and have concluded that the PrPC → PrPSc conversion is a purely conformational transition involving no chemical reactions. However, a reexamination of the available biochemical data suggests that the PrPC → PrPSc conversion also involves a covalent reaction of the (sole) intramolecular disulfide bond of PrPC. Specifically, the data are consistent with the hypothesis that infectious prions are composed of PrPSc polymers linked by intermolecular disulfide bonds. Thus, the PrPC → PrPSc conversion may involve not only a conformational transition but also a thiol/disulfide exchange reaction between the terminal thiolate of such a PrPSc polymer and the disulfide bond of a PrPC monomer. This hypothesis seems to account for several unusual features of prion diseases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This investigation was pursued to test the use of intracellular antibodies (intrabodies) as a means of blocking the pathogenesis of Huntington's disease (HD). HD is characterized by abnormally elongated polyglutamine near the N terminus of the huntingtin protein, which induces pathological protein–protein interactions and aggregate formation by huntingtin or its exon 1-containing fragments. Selection from a large human phage display library yielded a single-chain Fv (sFv) antibody specific for the 17 N-terminal residues of huntingtin, adjacent to the polyglutamine in HD exon 1. This anti-huntingtin sFv intrabody was tested in a cellular model of the disease in which huntingtin exon 1 had been fused to green fluorescent protein (GFP). Expression of expanded repeat HD-polyQ-GFP in transfected cells shows perinuclear aggregation similar to human HD pathology, which worsens with increasing polyglutamine length; the number of aggregates in these transfected cells provided a quantifiable model of HD for this study. Coexpression of anti-huntingtin sFv intrabodies with the abnormal huntingtin-GFP fusion protein dramatically reduced the number of aggregates, compared with controls lacking the intrabody. Anti-huntingtin sFv fused with a nuclear localization signal retargeted huntingtin analogues to cell nuclei, providing further evidence of the anti-huntingtin sFv specificity and of its capacity to redirect the subcellular localization of exon 1. This study suggests that intrabody-mediated modulation of abnormal neuronal proteins may contribute to the treatment of neurodegenerative diseases such as HD, Alzheimer's, Parkinson's, prion disease, and the spinocerebellar ataxias.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although there is considerable evidence that PrPSc is the infectious form of the prion protein, it has recently been proposed that a transmembrane variant called CtmPrP is the direct cause of prion-associated neurodegeneration. We report here, using a mutant form of PrP that is synthesized exclusively with the CtmPrP topology, that CtmPrP is retained in the endoplasmic reticulum and is degraded by the proteasome. We also demonstrate that CtmPrP contains an uncleaved, N-terminal signal peptide as well as a C-terminal glycolipid anchor. These results provide insight into general mechanisms that control the topology of membrane proteins during their synthesis in the endoplasmic reticulum, and they also suggest possible cellular pathways by which CtmPrP may cause disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Prion diseases are disorders of protein conformation and do not provoke an immune response. Raising antibodies to the prion protein (PrP) has been difficult due to conservation of the PrP sequence and to inhibitory activity of alpha-PrP antibodies toward lymphocytes. To circumvent these problems, we immunized mice in which the PrP gene was ablated (Prnp 0/0) and retrieved specific monoclonal antibodies (mAbs) through phage display libraries. This approach yielded alpha-PrP mAbs that recognize mouse PrP. Studies with these mAbs suggest that cellular PrP adopts an unusually open structure consistent with the conformational plasticity of this protein.