943 resultados para CC chemokine receptor 5
Resumo:
Tissue transglutaminase (TG2) is implicated in cellular processes such as apoptosis and cell migration. Its acyl transferase activity cross-links certain proteins, among them transcription factors were described. We show here that the TG2 inhibitor KCC009 reversed resistance to tumor necrosis factor-related apoptosis-inducing factor (TRAIL) in lung cancer cells. Sensitization required upregulation of death receptor 5 (DR5) but not of death receptor 4. Upregulation of DR5 involved the first intron of the DR5 gene albeit it was independent from p53 and nuclear factor kappa B. In conclusion, inhibition of tissue transglutaminase provides an interesting strategy for sensitization to TRAIL-induced apoptosis in p53-deficient lung cancer cells.
Resumo:
Clinical and preclinical evidence suggests a hyperactive glutamatergic system in clinical depression. Recently, the metabotropic glutamate receptor 5 (mGluR5) has been proposed as an attractive target for novel therapeutic approaches to depression. The goal of this study was to compare mGluR5 binding (in a positron emission tomography [PET] study) and mGluR5 protein expression (in a postmortem study) between individuals with major depressive disorder and psychiatrically healthy comparison subjects.
Resumo:
Chemokine processing by proteases is emerging as an important regulatory mechanism of leukocyte functions and possibly also of cancer progression. We screened a large panel of chemokines for degradation by cathepsins B and D, two proteases involved in tumor progression. Among the few substrates processed by both proteases, we focused on CCL20, the unique chemokine ligand of CCR6 that is expressed on immature dendritic cells and subtypes of memory lymphocytes. Analysis of the cleavage sites demonstrate that cathepsin B specifically cleaves off four C-terminally located amino acids and generates a CCL20(1-66) isoform with full functional activity. By contrast, cathepsin D totally inactivates the chemotactic potency of CCL20 by generating CCL20(1-55), CCL20(1-52), and a 12-aa C-terminal peptide CCL20(59-70). Proteolytic cleavage of CCL20 occurs also with chemokine bound to glycosaminoglycans. In addition, we characterized human melanoma cells as a novel CCL20 source and as cathepsin producers. CCL20 production was up-regulated by IL-1alpha and TNF-alpha in all cell lines tested, and in human metastatic melanoma cells. Whereas cathepsin D is secreted in the extracellular milieu, cathepsin B activity is confined to cytosol and cellular membranes. Our studies suggest that CCL20 processing in the extracellular environment of melanoma cells is exclusively mediated by cathepsin D. Thus, we propose a model where cathepsin D inactivates CCL20 and possibly prevents the establishment of an effective antitumoral immune response in melanomas.
Resumo:
Recognition of bacterial lipopolysaccharide (LPS) by the innate immune system involves at least three receptor molecules: CD14, TLR4 and MD-2. Additional receptor components such as heat shock proteins, chemokine receptor 4 (CXCR4), or CD55 have been suggested to be part of this activation cluster; possibly acting as additional LPS transfer molecules. Our group has previously identified CXCR4 as a component of the "LPS-sensing apparatus". In this study we aimed to elucidate the role that CXCR4 plays in innate immune responses to LPS. Here we demonstrate that CXCR4 transfection results in responsiveness to LPS. Fluorescence correlation spectroscopy experiments further showed that LPS directly interacts with CXCR4. Our data suggest that CXCR4 is not only involved in LPS binding but is also responsible for triggering signalling, especially mitogen-activated protein kinases in response to LPS. Finally, co-clustering of CXCR4 with other LPS receptors seems to be crucial for LPS signalling, thus suggesting that CXCR4 is a functional part of the multimeric LPS "sensing apparatus".
Resumo:
Chronic cholestasis often results in premature death from liver failure with fibrosis; however, the molecular mechanisms contributing to biliary cirrhosis are not demonstrated. In this article, we show that the death signal mediated by TNF-related apoptosis-inducing ligand (TRAIL) receptor 2/death receptor 5 (DR5) may be a key regulator of cholestatic liver injury. Agonistic anti-DR5 monoclonal antibody treatment triggered cholangiocyte apoptosis, and subsequently induced cholangitis and cholestatic liver injury in a mouse strain-specific manner. TRAIL- or DR5-deficient mice were relatively resistant to common bile duct ligation-induced cholestasis, and common bile duct ligation augmented DR5 expression on cholangiocytes, sensitizing mice to DR5-mediated cholangitis. Notably, anti-DR5 monoclonal antibody-induced cholangitis exhibited the typical histological appearance, reminiscent of human primary sclerosing cholangitis. Human cholangiocytes constitutively expressed DR5, and TRAIL expression and apoptosis were significantly elevated in cholangiocytes of human primary sclerosing cholangitis and primary biliary cirrhosis patients. Thus, TRAIL/DR5-mediated apoptosis may substantially contribute to chronic cholestatic disease, particularly primary sclerosing cholangitis.
Resumo:
BACKGROUND: Severe brain trauma leads to an activation of the immune system. To this date, neither the exact perturbation of the specific immune reaction induced by the traumatic brain injury (TBI), nor the interactions leading to the infiltration of peripheral immune cells into the brain are fully understood. PATIENTS AND METHODS: Serum was collected from 17 patients with TBI and a long bone fracture, 24 patients with an isolated long bone fracture and from healthy individuals. The effect of the serum on normal human monocytes and T-lymphocytes was tested in vitro by assessing proliferation and expression of surface markers, chemokine receptors and cytokines. RESULTS: Serum collected from patients with a TBI and a long bone fracture increased the expression of the chemokine receptor CCR4 in monocytes when compared to patients with an isolated long bone fracture. Extending this comparison to T-lymphocytes, the serum from TBI patients induced lower proliferation rates and decreased expression of the pro-inflammatory cytokine TNF-alpha, while simultaneously increasing the secretion of immune-modulatory cytokines (IL-4, IL-10 and TGF-beta) (p<0.05). CONCLUSION: Patients with a TBI release currently unknown soluble factors into the circulating blood that up regulate expression of chemokine receptor CCR4 in peripheral blood monocytes whilst concurrently inducing expression of immunosuppressive cytokines by activated T-lymphocytes.
Resumo:
Obsessive-compulsive disorder (OCD) is a disabling, mostly chronic, psychiatric condition with significant social and economic impairments and is a major public health issue. However, numerous patients are resistant to currently available pharmacological and psychological interventions. Given that recent animal studies and magnetic resonance spectroscopy research points to glutamate dysfunction in OCD, we investigated the metabotropic glutamate receptor 5 (mGluR5) in patients with OCD and healthy controls. We determined mGluR5 distribution volume ratio (DVR) in the brain of ten patients with OCD and ten healthy controls by using [11C]ABP688 positron-emission tomography. As a clinical measure of OCD severity, the Yale-Brown Obsessive Compulsive Scale (Y-BOCS) was employed. We found no significant global difference in mGluR5 DVR between patients with OCD and healthy controls. We did, however, observe significant positive correlations between the Y-BOCS obsession sub-score and mGluR5 DVR in the cortico-striatal-thalamo-cortical brain circuit, including regions of the amygdala, anterior cingulate cortex, and medial orbitofrontal cortex (Spearman's ρ's⩾ = 0.68, p < 0.05). These results suggest that obsessions in particular might have an underlying glutamatergic pathology related to mGluR5. The research indicates that the development of metabotropic glutamate agents would be useful as a new treatment for OCD.
Resumo:
BACKGROUND Nicotine addiction is a major public health problem and is associated with primary glutamatergic dysfunction. We recently showed marked global reductions in metabotropic glutamate receptor type 5 (mGluR5) binding in smokers and recent ex-smokers (average abstinence duration of 25 weeks). The goal of this study was to examine the role of mGluR5 downregulation in nicotine addiction by investigating a group of long-term ex-smokers (abstinence >1.5 years), and to explore associations between mGluR5 binding and relapse in recent ex-smokers. METHODS Images of mGluR5 receptor binding were acquired in 14 long-term ex-smokers, using positron emission tomography with radiolabeled [11C]ABP688, which binds to an allosteric site with high specificity. RESULTS Long-term ex-smokers and individuals who had never smoked showed no differences in mGluR5 binding in any of the brain regions examined. Long-term ex-smokers showed significantly higher mGluR5 binding than recent ex-smokers, most prominently in the frontal cortex (42%) and thalamus (57%). CONCLUSIONS Our findings suggest that downregulation of mGluR5 is a pathogenetic mechanism underlying nicotine dependence and the high relapse rate in individuals previously exposed to nicotine. Therefore, mGluR5 receptor binding appears to be an effective biomarker in smoking and a promising target for the discovery of novel medication for nicotine dependence and other substance-related disorders.
Resumo:
In the present review, we deliver an overview of the involvement of metabotropic glutamate receptor 5 (mGluR5) activity and density in pathological anxiety, mood disorders and addiction. Specifically, we will describe mGluR5 studies in humans that employed Positron Emission Tomography (PET) and combined the findings with preclinical animal research. This combined view of different methodological approaches-from basic neurobiological approaches to human studies-might give a more comprehensive and clinically relevant view of mGluR5 function in mental health than the view on preclinical data alone. We will also review the current research data on mGluR5 along the Research Domain Criteria (RDoC). Firstly, we found evidence of abnormal glutamate activity related to the positive and negative valence systems, which would suggest that antagonistic mGluR5 intervention has prominent anti-addictive, anti-depressive and anxiolytic effects. Secondly, there is evidence that mGluR5 plays an important role in systems for social functioning and the response to social stress. Finally, mGluR5's important role in sleep homeostasis suggests that this glutamate receptor may play an important role in RDoC's arousal and modulatory systems domain. Glutamate was previously mostly investigated in non-human studies, however initial human clinical PET research now also supports the hypothesis that, by mediating brain excitability, neuroplasticity and social cognition, abnormal metabotropic glutamate activity might predispose individuals to a broad range of psychiatric problems.
Resumo:
Transforming growth factor β2 (TGF-β2) is well known to stimulate the expression of pro-fibrotic connective tissue growth factor (CTGF) in several cell types including human mesangial cells. The present study demonstrates that TGF-β2 enhances sphingosine 1-phosphate receptor 5 (S1P5) mRNA and protein expression in a time and concentration dependent manner. Pharmacological and siRNA approaches reveal that this upregulation is mediated via activation of classical TGF-β downstream effectors, Smad and mitogen-activated protein kinases. Most notably, inhibition of Gi with pertussis toxin and downregulation of S1P5 by siRNA block TGF-β2-stimulated upregulation of CTGF, demonstrating that Gi coupled S1P5 is necessary for TGF-β2-triggered expression of CTGF in human mesangial cells. Overall, these findings indicate that TGF-β2 dependent upregulation of S1P5 is required for the induction of pro-fibrotic CTGF by TGF-β. Targeting S1P5 might be an attractive novel approach to treat renal fibrotic diseases.
Resumo:
Intravital imaging has revealed that T cells change their migratory behavior during physiological activation inside lymphoid tissue. Yet, it remains less well investigated how the intrinsic migratory capacity of activated T cells is regulated by chemokine receptor levels or other regulatory elements. Here, we used an adjuvant-driven inflammation model to examine how motility patterns corresponded with CCR7, CXCR4, and CXCR5 expression levels on ovalbumin-specific DO11.10 CD4(+) T cells in draining lymph nodes. We found that while CCR7 and CXCR4 surface levels remained essentially unaltered during the first 48-72 h after activation of CD4(+) T cells, their in vitro chemokinetic and directed migratory capacity to the respective ligands, CCL19, CCL21, and CXCL12, was substantially reduced during this time window. Activated T cells recovered from this temporary decrease in motility on day 6 post immunization, coinciding with increased migration to the CXCR5 ligand CXCL13. The transiently impaired CD4(+) T cell motility pattern correlated with increased LFA-1 expression and augmented phosphorylation of the microtubule regulator Stathmin on day 3 post immunization, yet neither microtubule destabilization nor integrin blocking could reverse TCR-imprinted unresponsiveness. Furthermore, protein kinase C (PKC) inhibition did not restore chemotactic activity, ruling out PKC-mediated receptor desensitization as mechanism for reduced migration in activated T cells. Thus, we identify a cell-intrinsic, chemokine receptor level-uncoupled decrease in motility in CD4(+) T cells shortly after activation, coinciding with clonal expansion. The transiently reduced ability to react to chemokinetic and chemotactic stimuli may contribute to the sequestering of activated CD4(+) T cells in reactive peripheral lymph nodes, allowing for integration of costimulatory signals required for full activation.
Resumo:
Many viruses have evolved mechanisms for evading the host immune system by synthesizing proteins that interfere with the normal immune response. The poxviruses are among the most accomplished at deceiving their hosts’ immune systems. The nucleotide sequence of the genome of the human cutaneous poxvirus, molluscum contagiosum virus (MCV) type 1, was recently reported to contain a region that resembles a human chemokine. We have cloned and expressed the chemokine-like genes from MCV type 1 and the closely related MCV type 2 to determine a potential role for these proteins in the viral life cycle. In monocyte chemotaxis assays, the viral proteins have no chemotactic activity but both viral proteins block the chemotactic response to the human chemokine, macrophage inflammatory protein (MIP)-1α. Like MIP-1α, both viral proteins also inhibit the growth of human hematopoietic progenitor cells, but the viral proteins are more potent in this activity than the human chemokine. These viral chemokines antagonize the chemotactic activity of human chemokines and have an inhibitory effect on human hematopoietic progenitor cells. We hypothesize that the inhibition of chemotaxis is an immune evasion function of these proteins during molluscum contagiosum virus infection. The significance of hematopoietic progenitor cell inhibition in viral pathogenesis is uncertain.
Resumo:
Chemotaxis is mediated by activation of seven-transmembrane domain, G protein-coupled receptors, but the signal transduction pathways leading to chemotaxis are poorly understood. To identify G proteins that signal the directed migration of cells, we stably transfected a lymphocyte cell line (300-19) with G protein-coupled receptors that couple exclusively to Gαq (the m3 muscarinic receptor), Gαi (the κ-opioid receptor), and Gαs (the β-adrenergic receptor), as well as the human thrombin receptor (PAR-1) and the C-C chemokine receptor 2B. Cells expressing receptors that coupled to Gαi, but not to Gαq or Gαs, migrated in response to a concentration gradient of the appropriate agonist. Overexpression of Gα transducin, which binds to and inactivates free Gβγ dimers, completely blocked chemotaxis although having little or no effect on intracellular calcium mobilization or other measures of cell signaling. The identification of Gβγ dimers as a crucial intermediate in the chemotaxis signaling pathway provides further evidence that chemotaxis of mammalian cells has important similarities to polarized responses in yeast. We conclude that chemotaxis is dependent on activation of Gαi and the release of Gβγ dimers, and that Gαi-coupled receptors not traditionally associated with chemotaxis can mediate directed migration when they are expressed in hematopoietic cells.
Resumo:
Cloning and sequencing of the upstream region of the gene of the CC chemokine HCC-1 led to the discovery of an adjacent gene coding for a CC chemokine that was named “HCC-2.” The two genes are separated by 12-kbp and reside in a head-to-tail orientation on chromosome 17. At variance with the genes for HCC-1 and other human CC chemokines, which have a three-exon-two-intron structure, the HCC-2 gene consists of four exons and three introns. Expression of HCC-2 and HCC-1 as studied by Northern analysis revealed, in addition to the regular, monocistronic mRNAs, a common, bicistronic transcript. In contrast to HCC-1, which is expressed constitutively in numerous human tissues, HCC-2 is expressed only in the gut and the liver. HCC-2 shares significant sequence homology with CKβ8 and the murine chemokines C10, CCF18/MRP-2, and macrophage inflammatory protein 1γ, which all contain six instead of four conserved cysteines. The two additional cysteines of HCC-2 form a third disulfide bond, which anchors the COOH-terminal domain to the core of the molecule. Highly purified recombinant HCC-2 was tested on neutrophils, eosinophils, monocytes, and lymphocytes and was found to exhibit marked functional similarities to macrophage inflammatory protein 1α. It is a potent chemoattractant and inducer of enzyme release in monocytes and a moderately active attractant for eosinophils. Desensitization studies indicate that HCC-2 acts mainly via CC chemokine receptor CCR1.
Resumo:
Although the protective cellular immune response to Mycobacterium tuberculosis requires recruitment of macrophages and T lymphocytes to the site of infection, the signals that regulate this trafficking have not been defined. We investigated the role of C-C chemokine receptor 2 (CCR2)-dependent cell recruitment in the protective response to M. tuberculosis. CCR2−/− mice died early after infection and had 100-fold more bacteria in their lungs than did CCR2+/+ mice. CCR2−/− mice exhibited an early defect in macrophage recruitment to the lung and a later defect in recruitment of dendritic cells and T cells to the lung. CCR2−/− mice also had fewer macrophages and dendritic cells recruited to the mediastinal lymph node (MLN) after infection. T cell migration through the MLN was similar in CCR2−/− and CCR2+/+ mice. However, T cell priming was delayed in the MLNs of the CCR2−/− mice, and fewer CD4+ and CD8+ T cells primed to produce IFN-γ accumulated in the lungs of the CCR2−/− mice. These data demonstrate that cellular responses mediated by activation of CCR2 are essential in the initial immune response and control of infection with M. tuberculosis.