960 resultados para CC BOND


Relevância:

30.00% 30.00%

Publicador:

Resumo:

"January 1998."

Relevância:

30.00% 30.00%

Publicador:

Resumo:

"September, 1985."

Relevância:

30.00% 30.00%

Publicador:

Resumo:

"Bids will be received until 11:00 A.M. Central Standard Time, Wednesday, December 6, 1995 at the James R. Thompson Center, 100 West Randolph, Capital Development Board Room, 14th Floor, Chicago, Ill."

Relevância:

30.00% 30.00%

Publicador:

Resumo:

"Bids will be received until 11:00 A.M. Central Standard Time, Thursday, January 27, 1994 at the James R. Thompson Center, 100 West Randolph, Capital Development Board Room, 14th Floor, Chicago, Ill."

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cover title.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

"This research was supported in part by a grant from the U.S. Department of Justice, Bureau of Justice Statistics (Grant Number 82-BJ-CX-K425).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

"IEPA/WPC/84-011." -- Cover.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Peer reviewed

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Peer reviewed

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The accurate prediction of stress histories for the fatigue analysis is of utmost importance for the design process of wind turbine rotor blades. As detailed, transient, and geometrically non-linear three-dimensional finite element analyses are computationally weigh too expensive, it is commonly regarded sufficient to calculate the stresses with a geometrically linear analysis and superimpose different stress states in order to obtain the complete stress histories. In order to quantify the error from geometrically linear simulations for the calculation of stress histories and to verify the practical applicability of the superposition principal in fatigue analyses, this paper studies the influence of geometric non-linearity in the example of a trailing edge bond line, as this subcomponent suffers from high strains in span-wise direction. The blade under consideration is that of the IWES IWT-7.5-164 reference wind turbine. From turbine simulations the highest edgewise loading scenario from the fatigue load cases is used as the reference. A 3D finite element model of the blade is created and the bond line fatigue assessment is performed according to the GL certification guidelines in its 2010 edition, and in comparison to the latest DNV GL standard from end of 2015. The results show a significant difference between the geometrically linear and non-linear stress analyses when the bending moments are approximated via a corresponding external loading, especially in case of the 2010 GL certification guidelines. This finding emphasizes the demand to reconsider the application of the superposition principal in fatigue analyses of modern flexible rotor blades, where geometrical nonlinearities become significant. In addition, a new load application methodology is introduced that reduces the geometrically non-linear behaviour of the blade in the finite element analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Predicting accurate bond length alternations (BLAs) in long conjugated oligomers has been a significant challenge for electronic-structure methods for many decades, made particularly important by the close relationships between BLA and the rich optoelectronic properties of π-delocalized systems. Here, we test the accuracy of recently developed, and increasingly popular, double hybrid (DH) functionals, positioned at the top of Jacobs Ladder of DFT methods of increasing sophistication, computational cost, and accuracy, due to incorporation of MP2 correlation energy. Our test systems comprise oligomeric series of polyacetylene, polymethineimine, and polysilaacetylene up to six units long. MP2 calculations reveal a pronounced shift in BLAs between the 6-31G(d) basis set used in many studies of BLA to date and the larger cc-pVTZ basis set, but only modest shifts between cc-pVTZ and aug-cc-pVQZ results. We hence perform new reference CCSD(T)/cc-pVTZ calculations for all three series of oligomers against which we assess the performance of several families of DH functionals based on BLYP, PBE, and TPSS, along with lower-rung relatives including global- and range-separated hybrids. Our results show that DH functionals systematically improve the accuracy of BLAs relative to single hybrid functionals. xDH-PBE0 (N4 scaling using SOS-MP2) emerges as a DH functional rivaling the BLA accuracy of SCS-MP2 (N5 scaling), which was found to offer the best compromise between computational cost and accuracy the last time the BLA accuracy of DFT- and wave function-based methods was systematically investigated. Interestingly, xDH-PBE0 (XYG3), which differs to other DHs in that its MP2 term uses PBE0 (B3LYP) orbitals that are not self-consistent with the DH functional, is an outlier of trends of decreasing average BLA errors with increasing fractions of MP2 correlation and HF exchange.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using artificial neural networks (ANN) and ordinal regression (OR) as alternative methods to predict LPT bond ratings, we examine the role that various financial and industry variables have on Listed Property Trust (LPT) bond ratings issued by Standard and Poor’s from 1999-2006. Our study shows that both OR and ANN provide robust alternatives to rating LPT bonds and that there are no significant differences in results between the two full models. OR results show that of the financial variables used in our models, debt coverage and financial leverage ratios have the most profound effect on LPT bond ratings. Further, ANN results show that 73.0% of LPT bond rating is attributable to financial variables and 23.0% to industry-based variables with office LPT sector accounting for 2.6%, retail LPT 10.9% and stapled management structure 13.5%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper analyzes the common factor structure of US, German, and Japanese Government bond returns. Unlike previous studies, we formally take into account the presence of country-specific factors when estimating common factors. We show that the classical approach of running a principal component analysis on a multi-country dataset of bond returns captures both local and common influences and therefore tends to pick too many factors. We conclude that US bond returns share only one common factor with German and Japanese bond returns. This single common factor is associated most notably with changes in the level of domestic term structures. We show that accounting for country-specific factors improves the performance of domestic and international hedging strategies.