998 resultados para CATHODIC PROTECTION


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The mitigation of external corrosion of energy pipelines by a combination of barrier coatings and Cathodic Protection (CP) is not always effective. Even when design specifications are properly met, the shielding of cathodic protection current from reaching steel surface by disbonded barrier coatings, often referred to as cathodic shielding, may lead to severe corrosion problems such as deep pitting, high and near neutral pH Stress Corrosion Cracking (SCC) and Microbiologically Induced Corrosion (MIC). Unfortunately, current indirect assessment methods used in the pipeline industry have serious difficulties in detecting such corrosion problems. This paper provides a brief review of current techniques and their limitations when being applied under complex buried pipeline environmental conditions. The main purpose is to identify potential methods that could be utilised in the design of new monitoring probes specific for the monitoring of cathodic shielding and corrosion of disbonded coatings in the pipeline industry.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This work presents a novel corrosion monitoring probe designed for simulating the conditions developed under disbonded coatings and for measuring current densities and their distribution over a simulated pipeline surface. The probe’s concept was experimentally evaluated via immersion tests under Cathodic Protection (CP) in high resistivity aqueous solution. Under the disbonded area, anodic currents as well as cathodic currents were both measured. Anodic current densities were used to calculate metal losses by means of Faraday’s law. Calculated corrosion patterns were compared with corrosion damage observed at the probe’s surface after a period of test. The probe’s working principles are explained in terms of simple electrochemistry.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The disbondment of protective organic coatings under excessive cathodic protection potentials is a widely reported coating failure mechanism. Traditional methods of evaluating cathodic disbondment are based on ex situ visual inspection of coated metal surfaces after being exposed to standard cathodic disbondment testing conditions for a long period of time. Although electrochemical impedance spectroscopy (EIS) has been employed as an effective means of evaluating various anti-corrosion properties of organic coatings; its application for assessing the cathodic disbondment resistance of coatings has not been sufficiently exploited. This paper reports an experimental study aimed at developing EIS into a tool for in situ measurement and monitoring of cathodic disbondment of coatings. A clear correlation between EIS parameters and the disbonded coating areas has been confirmed upon short term exposure of epoxy-coated steel electrodes to cathodic disbondment conditions; however the degree of this correlation was found to decrease with the extension of exposure duration. This observation suggests that EIS loses its sensitivity with the propagation of coating disbondment, and that in order to achieve quantitative determination of the coating cathodic disbondment localized EIS measurements are required to measure the parameters related to local disbonded areas.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Zinc-rich ethyl silicate coatings are quite successful in protecting steel against corrosion under severe exposing conditions. In spite of providing excellent cathodic protection to steel structure after film curing, two-component zinc-rich ethyl silicate coatings have some limitations, one of which is inadequate shelf life as a result of in-can binder gelation. In this work, the preparation steps of ethyl silicate such as pre-hydrolysis, dehydration and organometallic reactions were surveyed and herein an approach towards understanding the cause and effect relationship of the use of ingredients is presented. The effects of water and catalytic acid dosages on gel time under accelerated conditions and the effect of alcoholic solvent order on the rate of the hydrolysis and dehydration reactions were studied via Karl-Fischer test determining the water content of hydrolysate. A thriving optimization in shelf life without any loss in physical–mechanical characteristics of the final film (e.g. hardness, adhesion, solvent and salt spray resistance) was obtained.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

铜管一直是电厂凝汽器的主要应用管材,但由于其抗冲刷和抵御污染物腐蚀的能力差,特别不耐氨蚀,美国和欧洲大量使用不锈钢管替代铜管作为冷凝管,然而不锈钢管在我国的运用仅处于初步阶段。 常使用锌、铝阳极对铜管进行牺牲阳极保护,然而存在着电位差过大、阳极溶解过快的问题。铁基牺牲阳极与铜电位差适当、来源广泛、价格便宜,在一些工程上有所应用,但是目前针对铁基牺牲阳极的理论研究报道很少。 本文选用紫铜管、304不锈钢管作为实验用管材,首先运用实验室全浸实验、极化曲线和电化学阻抗研究了二者在海水和淡水中的腐蚀性能以及CO2、溶解氧对其腐蚀的影响。结果表明:CO2会加速二者的腐蚀,溶解氧却对它们的腐蚀影响不同,促进铜管的腐蚀却抑制不锈钢管的腐蚀;随浸泡时间的延长,紫铜管由于表面产物膜的生成耐蚀性提高,304不锈钢管的耐蚀性却降低;淡水中,304不锈钢管和紫铜管都具有很好的耐蚀性能。随后,运用失重法和极化曲线对比研究了紫铜管、304不锈钢管的氨蚀性能,运用SEM分析和电化学阻抗研究了紫铜在不同浓度氨溶液中的腐蚀机理。发现,304不锈钢管的耐氨蚀能力远远好于铜管;溶解氧是影响氨蚀的关键因素,其对二者氨蚀的影响也不同;紫铜管在低氨浓度和高氨浓度溶液中腐蚀机理和产物不同,低氨浓度时形成保护性的产物膜(CuO 和Cu(OH)2),高氨浓度时由活化溶解控制,生成可溶的[Cu (NH3)4]2+。 选用工业纯铁、35钢为牺牲阳极材料。恒电流实验结果表明它们具有良好的牺牲阳极性能;通过极化曲线和自腐蚀电位测试分析,认为将二者用于铜管牺牲阳极保护是可行的;实验室阴极保护效果测试表明,工业纯铁和35钢对紫铜管具有良好的保护效果,保护度达90%以上。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

随着人们对能源需求的不断增加,深海海洋油气开发已引起了人们越来越大的兴趣,随之而来的是对海洋构筑物的设计和防护提出了更高的要求。由于在传统的阴极保护工程设计中,大多采用实际测量或经验估计的方法来掌握电位分布规律,很难真实的反映构筑物的实际状态,为了确保安全,往往采用较大的安全系数,不但会造成金属材料的浪费,而且还会在构筑物的局部造成保护不足或过保护。 本文研究了边界元方法(BEM)利用数值仿真技术对阴极保护状态下的海洋构筑物的保护状态进行模拟,从而获得阴极保护状态下的金属材料的电位分布。采用常数单元对于二维问题进行了研究,推导出了边界积分方程的离散化形式,并结合阴极保护环境下的阳极和阴极的极化曲线作为边界条件,建立了线性方程组。采用Newton-Raphson 迭代法和分段拟线性化的方法对边界条件做了线性化处理,应用FORTRAN语言开发出阴极保护的边界元仿真求解程序CPBEM,并利用该程序选择合适的算例进行了验证,结果表明该程序是有效和可行的。 通过管线钢在不同温度海泥埋片的腐蚀失重实验,证明了如果有充足的氧的供给的情况下,温度每增加10oC,腐蚀速度便增加一倍。阴极保护系统数值仿真的精确度最主要的影响因素就是阴极和阳极的极化曲线。而金属材料的极化曲线往往受到多种环境因素的影响,本文系统的讨论了在海泥介质中两种管线钢的腐蚀行为,对管线钢极化行为产生影响的各种环境因素,以及这些因素与金属的腐蚀速度之间的关系。首次将灰关联分析的手段运用到海泥介质的腐蚀,研究了环境因素对于ERW,SML两种管线钢在海泥中的腐蚀速率的影响。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A comparative investigation of hot dip Zn-25Al alloy, Zn-55Al-Si and Zn coatings on steel was performed with attention to their corrosion performance in seawater. The results of 2-year exposure testing of these at Zhoushan test site are reported here. In tidal and immersion environments, Zn-25Al alloy coating is several times more durable than zinc coating of double thickness. At long exposure times, corrosion rate for the Zn-25Al alloy coating remains indistinguishable from that for the Zn-55Al-Si coating of similar thickness in tidal zone, and is two to three times lower than the latter in immersion zone. The decrease in tensile strength suggested that galvanized and Zn-55Al-Si coated steel suffer intense pitting corrosion in immersion zone. The electrochemical tests showed that all these coatings provide cathodic protection to the substrate metal; the galvanic potentials are equal to - 1,050, - 1,025 and - 880 mV (SCE) for zinc, Zn-25Al alloy and Zn-55Al-Si coating, respectively, which are adequate to keep the steel inside the immunity region. It is believed that the superior performance of the Zn-25Al alloy coating is due to its optimal combination of the uniform corrosion resistance and pitting corrosion resistance. The inferior corrosion performance by comparison of the Zn coating mainly results from its larger dissolution rate, while the failure of the Zn-55Al-Si coating is probably related to its higher susceptibility to pitting corrosion in seawater.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The method for the measurement of the pure mechanical wear loss for 321 stainless steel, 1045 steel and pure iron in the study of the synergy between corrosion and wear was studied, The methods studied included the measurement in distilled water, by cathodic protection and by adding inhibitor KI, and all were compared with the wear loss in air. The experiment showed that the pure mechanical wear losses and friction coefficients obtained by the three methods were close to each other and can be used to calculate the various wear components in the study of the interaction of corrosion and wear, but the measurements in distilled water for pure iron and 1045 steel are not recommended due to their corrosion.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Experiments on the corrosion fatigue behaviour of welded joints of the steel for marine platform in air and seawater, and of the joints in seawater with cathodic protection, yielded data for linear regression to obtain fatigue life curves (Delta S-N-f). The laws of corrosion fatigue in welded joints of test steel are discussed with reference to those of A(587) and A(131) steel. In these experiments, the fatigue damage occurring at all welded joints around the weld interface resulted in the cracks and fractures. The fatigue life of the specimens in seawater with cathodic protection is longer than that in seawater Without protection.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

At present water treatment and distribution is of high priority to ensure that communities have access to safe and affordable drinking water. Current information states that in the United States a total annual cost of $36 billion (US) is spent replacing aging infrastructure, lost water from unaccounted-for leaks, corrosion inhibitors, internal mortar linings, external coatings, and cathodic protection as a result of corrosion. In order to reduce the cost incurred as a result of corrosion in the water distribution industry, it is essential that better corrosion management and preventative strategies are implemented. However through investigation of research previously undertaken by others, it was found that there was a lack of study of corrosion within distribution systems in the tropics taking into account the related seasonal temperature variations. To assist in the development of management strategies to improve the outcomes of drinking water distribution systems, the authors propose to implement a pilot study involving the installation of a corrosion reactor based on standard corrosion assessment technologies in a water distribution system located in the tropics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Heterogeneous electrochemical processes are very common in industry and are important, but difficult topics in electrochemical and corrosion science studies. Traditional electrochemical techniques which employ a conventional one-piece electrode have major limitations in studying heterogeneous electrochemical processes since the one-piece electrode has major difficulties in measuring electrochemical parameters from local areas of the electrode surface. In order to overcome this problem, a multi-piece electrode, namely the wire beam electrode, has been developed. This new electrode enables the measurement of electrochemical parameters from local areas over a working electrode surface and thus it can be used to study heterogeneous electrochemical processes. This paper describes how this new electrode was applied in studying several typical heterogeneous electrochemical processes including water-drop corrosion, corrosion under non-uniform organic films and cathodic protection.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Localized corrosion can occur under disbonded coatings threatening the safe operation of industry infrastructures such as underground oil and gas pipelines. Currently the assessment of localised corrosion under coating defects is a major technical challenge. The application of corrosion probes to monitor corrosion under disbonded coating also remains a difficulty. This paper presents a new corrosion sensor concept capable of electrochemically measuring corrosion rates under disbonded coatings on cathodically protected structures such as energy pipelines. Examples of its capabilities are illustrated with experimental data obtained in low conductivity aqueous solutions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Steel pipelines, buried under the soil and protected by the combination of protective coatings and cathodic protection (CP), are used for oil and gas transportation. These pipelines are one of the critical infrastructures for energy transportation and therefore became lifelines of modern society. The deterioration of the external surfaces of transmission pipelines is a serious problem and is caused mainly by coating and/or CP failure leading to the loss of integrity of pipelines. To avoid such damage, there is a need of techniques which are able to locate active corrosion sites, monitor corrosion, and evaluate corrosion damage. Fundamental understanding of such processes occurring on coated pipelines (with various types of defects in coatings as well as pipe) in complex soil environment is necessary for the development of such techniques. Numerous laboratory techniques, i.e., electrochemical impedance spectroscopy based, polarisation measurements based, mathematical simulations, direct observation etc. have been used to develop fundamental understanding, simulate and evaluate corrosion occurring in oil and gas pipelines under various operating conditions. Given the complex nature of the pipeline corrosion, application of these laboratory techniques in field measurements as well as in understanding the corrosion mechanisms is lacking. This paper presents an overview of investigations, based on electrochemical techniques, for simulation and evaluation of pipeline corrosion in laboratory.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Underground pipeline corrosion monitoring is a complex technical challenge. Currently there is no corrosion monitoring probe that is able to provide in situ information on corrosion under disbonded coatings. This paper presents a proof of concept of a novel corrosion monitoring probe intended to simulate corrosion under disbonded pipeline coatings and monitor its rate under Cathodic Protection (CP). The probe's capabilities to measure corrosion rates and simulate disbonded coating conditions are illustrated by a typical experiment that involved testing of the probe in 0.1M NaCl at -850mVCSE. Estimated metal thickness losses based on results measured by the probe were compared against corrosion patterns and profilometry measurements of control specimens exposed to the same conditions.