836 resultados para CATEGORICAL-DATA ANALYSIS
Resumo:
This report is an update of an earlier one produced in January 2010 (see Carrington et al. 2010) which remains as an ePrint through the project’s home page. This report focuses on our examination of extant data which have been sourced with respect to unintentional serious and violent harm, including injuries, to males living in regional and remote Australia . and which were available in public data bases at production. Such harm typically might be caused by, for example, transport accidents, occupational exposures and hazards, burns and so on. Thus unintentional violent harm can cause physical trauma the consequences of which can lead to chronic conditions including psychological harm or substance abuse.
Resumo:
This report is an update of an earlier one produced in January 2010 (see Carrington et al. 2010) which remains as an ePrint through the project’s home page. The report focus on our examination of extant data which have been sourced with respect to personally and socially risky behaviour associated with males living in regional and remote Australia and which were available in public data bases at production.
Resumo:
This report is an update of an earlier one produced in January 2010 (see Carrington et al. 2010) which remains as an ePrint through the project’s home page. The report considers extant data which have been sourced with respect to some of the consequences of violent acts, incidents, harms and risky behaviour involving males living in regional and remote Australia and which were available in public data bases at production.
Resumo:
Although accountability in the form of high stakes testing is in favour in the contemporary Australian educational context, this practice remains a highly contested source of debate. Proponents for high stakes tests claim that higher standards in teaching and learning result from their implementation, whereas others believe that this type of testing regime is not required and may even in fact be counterproductive. Regardless of what side of the debate you sit on, the reality is that at present, high stakes testing appears to be here to stay. It could therefore be argued it is essential that teachers understand accountability and possess the specific skills to interpret and use test data beneficially.
Resumo:
Citizen Science projects are initiatives in which members of the general public participate in scientific research projects and perform or manage research-related tasks such as data collection and/or data annotation. Citizen Science is technologically possible and scientifically significant. However, as the gathered information is from the crowd, the data quality is always hard to manage. There are many ways to manage data quality, and reputation management is one of the common approaches. In recent year, many research teams have deployed many audio or image sensors in natural environment in order to monitor the status of animals or plants. The collected data will be analysed by ecologists. However, as the amount of collected data is exceedingly huge and the number of ecologists is very limited, it is impossible for scientists to manually analyse all these data. The functions of existing automated tools to process the data are still very limited and the results are still not very accurate. Therefore, researchers have turned to recruiting general citizens who are interested in helping scientific research to do the pre-processing tasks such as species tagging. Although research teams can save time and money by recruiting general citizens to volunteer their time and skills to help data analysis, the reliability of contributed data varies a lot. Therefore, this research aims to investigate techniques to enhance the reliability of data contributed by general citizens in scientific research projects especially for acoustic sensing projects. In particular, we aim to investigate how to use reputation management to enhance data reliability. Reputation systems have been used to solve the uncertainty and improve data quality in many marketing and E-Commerce domains. The commercial organizations which have chosen to embrace the reputation management and implement the technology have gained many benefits. Data quality issues are significant to the domain of Citizen Science due to the quantity and diversity of people and devices involved. However, research on reputation management in this area is relatively new. We therefore start our investigation by examining existing reputation systems in different domains. Then we design novel reputation management approaches for Citizen Science projects to categorise participants and data. We have investigated some critical elements which may influence data reliability in Citizen Science projects. These elements include personal information such as location and education and performance information such as the ability to recognise certain bird calls. The designed reputation framework is evaluated by a series of experiments involving many participants for collecting and interpreting data, in particular, environmental acoustic data. Our research in exploring the advantages of reputation management in Citizen Science (or crowdsourcing in general) will help increase awareness among organizations that are unacquainted with its potential benefits.
Resumo:
Citizen Science projects are initiatives in which members of the general public participate in scientific research projects and perform or manage research-related tasks such as data collection and/or data annotation. Citizen Science is technologically possible and scientifically significant. However, although research teams can save time and money by recruiting general citizens to volunteer their time and skills to help data analysis, the reliability of contributed data varies a lot. Data reliability issues are significant to the domain of Citizen Science due to the quantity and diversity of people and devices involved. Participants may submit low quality, misleading, inaccurate, or even malicious data. Therefore, finding a way to improve the data reliability has become an urgent demand. This study aims to investigate techniques to enhance the reliability of data contributed by general citizens in scientific research projects especially for acoustic sensing projects. In particular, we propose to design a reputation framework to enhance data reliability and also investigate some critical elements that should be aware of during developing and designing new reputation systems.
Resumo:
This paper describes an innovative platform that facilitates the collection of objective safety data around occurrences at railway level crossings using data sources including forward-facing video, telemetry from trains and geo-referenced asset and survey data. This platform is being developed with support by the Australian rail industry and the Cooperative Research Centre for Rail Innovation. The paper provides a description of the underlying accident causation model, the development methodology and refinement process as well as a description of the data collection platform. The paper concludes with a brief discussion of benefits this project is expected to provide the Australian rail industry.
Resumo:
Summary: More than ever before contemporary societies are characterised by the huge amounts of data being transferred. Authorities, companies, academia and other stakeholders refer to Big Data when discussing the importance of large and complex datasets and developing possible solutions for their use. Big Data promises to be the next frontier of innovation for institutions and individuals, yet it also offers possibilities to predict and influence human behaviour with ever-greater precision
Resumo:
In Australia, as in some other western nations, governments impose accountability measures on educational institutions (Earl, 2005). One such accountability measure is the National Assessment Program - Literacy and Numeracy (NAPLAN) from which high-stakes assessment data is generated. In this article, a practical method of data analysis known as the Over Time Assessment Data Analysis (OTADA) is offered as an analytical process by which schools can monitor their current and over time performances. This analysis developed by the author, is currently used extensively in schools throughout Queensland. By Analysing in this way, teachers, and in particular principals, can obtain a quick and insightful performance overview. For those seeking to track the achievements and progress of year level cohorts, the OTADA should be considered.
Resumo:
To the Editor—In a recent review article in Infection Control and Hospital Epidemiology, Umscheid et al1 summarized published data on incidence rates of catheter-associated bloodstream infection (CABSI), catheter-associated urinary tract infection (CAUTI), surgical site infection (SSI), and ventilator- associated pneumonia (VAP); estimated how many cases are preventable; and calculated the savings in hospital costs and lives that would result from preventing all preventable cases. Providing these estimates to policy makers, political leaders, and health officials helps to galvanize their support for infection prevention programs. Our concern is that important limitations of the published studies on which Umscheid and colleagues built their findings are incompletely addressed in this review. More attention needs to be drawn to the techniques applied to generate these estimates...
Resumo:
Many techniques in information retrieval produce counts from a sample, and it is common to analyse these counts as proportions of the whole - term frequencies are a familiar example. Proportions carry only relative information and are not free to vary independently of one another: for the proportion of one term to increase, one or more others must decrease. These constraints are hallmarks of compositional data. While there has long been discussion in other fields of how such data should be analysed, to our knowledge, Compositional Data Analysis (CoDA) has not been considered in IR. In this work we explore compositional data in IR through the lens of distance measures, and demonstrate that common measures, naïve to compositions, have some undesirable properties which can be avoided with composition-aware measures. As a practical example, these measures are shown to improve clustering. Copyright 2014 ACM.
Resumo:
Critical to the research of urban morphologists is the availability of historical records that document the urban transformation of the study area. However, thus far little work has been done towards an empirical approach to the validation of archival data in this field. Outlined in this paper, therefore, is a new methodology for validating the accuracy of archival records and mapping data, accrued through the process of urban morphological research, so as to establish a reliable platform from which analysis can proceed. The paper particularly addresses the problems of inaccuracies in existing curated historical information, as well as errors in archival research by student assistants, which together give rise to unacceptable levels of uncertainty in the documentation. The paper discusses the problems relating to the reliability of historical information, demonstrates the importance of data verification in urban morphological research, and proposes a rigorous method for objective testing of collected archival data through the use of qualitative data analysis software.
Resumo:
The development of microfinance in Vietnam since 1990s has coincided with a remarkable progress in poverty reduction. Numerous descriptive studies have illustrated that microfinance is an effective tool to eradicate poverty in Vietnam but evidence from quantitative studies is mixed. This study contributes to the literature by providing new evidence on the impact of microfinance to poverty reduction in Vietnam using the repeated cross - sectional data from the Vietnam Living Standard s Survey (VLSS) during period 1992 - 2010. Our results show that micro - loans contribute significantly to household consumption.
Resumo:
Most real-life data analysis problems are difficult to solve using exact methods, due to the size of the datasets and the nature of the underlying mechanisms of the system under investigation. As datasets grow even larger, finding the balance between the quality of the approximation and the computing time of the heuristic becomes non-trivial. One solution is to consider parallel methods, and to use the increased computational power to perform a deeper exploration of the solution space in a similar time. It is, however, difficult to estimate a priori whether parallelisation will provide the expected improvement. In this paper we consider a well-known method, genetic algorithms, and evaluate on two distinct problem types the behaviour of the classic and parallel implementations.