970 resultados para CANNABIS SATIVA
Resumo:
Objective: Cannabidiol is a chemical constituent from Cannabis sativa and it has multiple mechanisms of action, including antidepressant effects. The main objective of the present study was to evaluate behavioural and molecular effects induced by administration of cannabidiol and imipramine in rats. Methods: In the present study, rats were acutely or chronically treated for 14 days once a day with saline, cannabidiol (15, 30 and 60 mg/kg) or imipramine (30 mg/kg) and the animals behaviour was assessed in forced swimming and open-field tests. Afterwards, the prefrontal cortex, hippocampus and amygdala brain-derived neurotrophic factor (BDNF) levels were assessed by enzyme-linked immunosorbent sandwich assay. Results: We observed that both acute and chronic treatments with imipramine at the dose of 30 mg/kg and cannabidiol at the dose of 30 mg/kg reduced immobility time and increased swimming time; climbing time was increased only with imipramine at the dose of 30 mg/kg, without affecting locomotor activity. In addition, chronic treatment with cannabidiol at the dose of 15 mg/kg and imipramine at the dose of 30 mg/kg increased BDNF levels in the rat amygdala. Conclusion: In conclusion, our results indicate that cannabidiol has an antidepressant-like profile and could be a new pharmacological target for the treatment of major depression.
Resumo:
Cannabis sativa, the most widely used illicit drug, has profound effects on levels of anxiety in animals and humans. Although recent studies have helped provide a better understanding of the neurofunctional correlates of these effects, indicating the involvement of the amygdala and cingulate cortex, their reciprocal influence is still mostly unknown. In this study dynamic causal modelling (DCM) and Bayesian model selection (BMS) were used to explore the effects of pure compounds of C. sativa [600 mg of cannabidiol (CBD) and 10 mg Delta(9)-tetrahydrocannabinol (Delta(9)-THC)] on prefrontal-subcortical effective connectivity in 15 healthy subjects who underwent a double-blind randomized, placebo-controlled fMRI paradigm while viewing faces which elicited different levels of anxiety. In the placebo condition, BMS identified a model with driving inputs entering via the anterior cingulate and forward intrinsic connectivity between the amygdala and the anterior cingulate as the best fit. CBD but not Delta(9)-THC disrupted forward connectivity between these regions during the neural response to fearful faces. This is the first study to show that the disruption of prefrontal-subocrtical connectivity by CBD may represent neurophysiological correlates of its anxiolytic properties.
Resumo:
Delta-9-tetrahydrocannabinol (Delta-9-THC) and Cannabidiol (CBD), the two main ingredients of the Cannabis sativa plant have distinct symptomatic and behavioral effects. We used functional magnetic resonance imaging (fMRI) in healthy volunteers to examine whether Delta-9-THC and CBD had opposite effects on regional brain function. We then assessed whether pretreatment with CBD can prevent the acute psychotic symptoms induced by Delta-9-THC. Fifteen healthy men with minimal earlier exposure to cannabis were scanned while performing a verbal memory task, a response inhibition task, a sensory processing task, and when viewing fearful faces. Subjects were scanned on three occasions, each preceded by oral administration of Delta-9-THC, CBD, or placebo. BOLD responses were measured using fMRI. In a second experiment, six healthy volunteers were administered Delta-9-THC intravenously on two occasions, after placebo or CBD pretreatment to examine whether CBD could block the psychotic symptoms induced by Delta-9-THC. Delta-9-THC and CBD had opposite effects on activation relative to placebo in the striatum during verbal recall, in the hippocampus during the response inhibition task, in the amygdala when subjects viewed fearful faces, in the superior temporal cortex when subjects listened to speech, and in the occipital cortex during visual processing. In the second experiment, pretreatment with CBD prevented the acute induction of psychotic symptoms by Delta-9-tetrahydrocannabinol. Delta-9-THC and CBD can have opposite effects on regional brain function, which may underlie their different symptomatic and behavioral effects, and CBD`s ability to block the psychotogenic effects of Delta-9-THC. Neuropsychopharmacology (2010) 35, 764-774; doi:10.1038/npp.2009.184; published online 18 November 2009
Resumo:
Context: Cannabis use can both increase and reduce anxiety in humans. The neurophysiological substrates of these effects are unknown. Objective: To investigate the effects of 2 main psycho-active constituents of Cannabis sativa (Delta 9-tetrahydrocannabinol [Delta 9-THC] and cannabidiol [CBD]) on regional brain function during emotional processing. Design: Subjects were studied on 3 separate occasions using an event-related functional magnetic resonance imaging paradigm while viewing faces that implicitly elicited different levels of anxiety. Each scanning session was preceded by the ingestion of either 10 mg of Delta 9-THC, 600 mg of CBD, or a placebo in a double-blind, randomized, placebo-controlled design. Participants: Fifteen healthy, English-native, right-handed men who had used cannabis 15 times or less in their life. Main Outcome Measures: Regional brain activation (blood oxygenation level-dependent response), electrodermal activity (skin conductance response [SCR]), and objective and subjective ratings of anxiety. Results: Delta 9-Tetrahydrocannabinol increased anxiety, as well as levels of intoxication, sedation, and psychotic symptoms, whereas there was a trend for a reduction in anxiety following administration of CBD. The number of SCR fluctuations during the processing of intensely fearful faces increased following administration of Delta 9-THC but decreased following administration of CBD. Cannabidiol attenuated the blood oxygenation level dependent signal in the amygdala and the anterior and posterior cingulate cortex while subjects were processing intensely fearful faces, and its suppression of the amygdalar and anterior cingulate responses was correlated with the concurrent reduction in SCR fluctuations. Delta 9-Tetrahydrocannabinol mainly modulated activation in frontal and parietal areas. Conclusions: Delta 9-Tetrahydrocannabinol and CBD had clearly distinct effects on the neural, electrodermal, and symptomatic response to fearful faces. The effects of CBD on activation in limbic and paralimbic regions may contribute to its ability to reduce autonomic arousal and subjective anxiety, whereas the anxiogenic effects of Delta 9-THC may be related to effects in other brain regions.
Resumo:
mais consumida no país, e proscrita pela Lei n° 11.343 de 23 de agosto de 2006 (chamada de “nova lei de droga”), onde todos os isômeros, sais, éteres e ésteres do ∆9-Tetrahidrocannabinol (THC), princípio ativo, foram proscritos. O método utilizado pela Polícia Civil do Estado do Espírito Santo para a identificação de cannabinóides é o teste colorimétrico, por meio de solução básica de Salt Fast Blue B, o qual apresenta resultados falsos negativos e falsos positivos. A técnica de espectrometria de massas de altíssima resolução e exatidão de massas (ESI(-)FTICR MS), permite detectar os principais cannabinóides na forma de molécula desprotonada, íon [M-H]-. Alguns íons que podem ser identificados são: [CBN - H]- de m/z 309 (CBN = cannabinol); [THC - H]- de m/z 313 (THC = tetrahidrocannabinol) e [CBD - H]- de m/z 313; [CBC - H]- de m/z 327 (CBC = cannabicromeno); [CBEA - H]- de m/z 345 (CBEA = ácido cannabielsóico); [CBNA - H]- de m/z 353 (CBNA = ácido cannabinólico); [THCA - H]- de m/z 357 (THCA = ácido tetrahidrocannabinólico); [8α, 11-Bis-hydroxy-∆9-THC-A - H]- de m/z 389); [∆9-THCA +C2H2O - H]- de m/z 357; e dímeros com m/z de 637, 653, 673, 681, 685 e 717. Foram encontrados adulterantes identificados como [M + N + H]+ : 491; [2M + N + H]+ : 819 e [3M + N + H]+ : 1147, onde M = OTHC (328Da C21H28O3) e N = Nicotina (162Da C10H14N2), além de lidocaína e cocaína. Ainda foram identificados alguns noncannabinóides como Cannflavino A e B e ácidos graxos como palmítico, oleico, linolênico e gama-linolênico nos extratos de sementes de Cannabis. Este estudo tem o objetivo de identificar o perfil químico de amostras de maconha, apreendidas pela Polícia Civil do Estado do Espírito Santo, por ESI(±)-FT-ICR MS.
Resumo:
O uso de drogas entre estudantes universitários está cada dia mais difundido. Os índices de uso de álcool e drogas ilícitas podem ser maiores na população universitária do que na população em geral. OBJETIVO: Este trabalho procurou detectar quais são as drogas de abuso usadas pelos estudantes de medicina de universidade privada de Curitiba para posterior implementação de programa de prevenção secundária nesta população. MÉTODOS: Durante 106 dias, em 2006, foi aplicada adaptação virtual do questionário Alcohol, Smoking and Substance Involvement Screening Test (ASSIST) aos 209 estudantes de medicina participantes do presente trabalho. RESULTADOS: Oitenta e oito (42%) estudantes participaram. A maioria era solteira (88%) e tinham entre 17 e 25 anos (85%). Setenta e oito por cento usou álcool pelo menos uma vez na vida. O uso na vida de tabaco foi de 39%; cannabis sativa 26%, inalantes 22% e estimulantes 11%. DISCUSSÃO: Os resultados encontrados são semelhantes aos de outras pesquisas em universidades e mostram alto número de usuários de drogas, especialmente o álcool. Essa é uma situação preocupante e aponta a importância da instituição educacional na prevenção da dependência química. CONCLUSÃO: O ambiente universitário influencia o uso de drogas e novas estratégias de prevenção são necessárias.
Resumo:
OBJETIVO: Traçar o perfil do uso de substâncias psicoativas entre os universitários do Curso de Medicina do Centro de Ciências da Saúde da Universidade Federal do Espírito Santo. MÉTODOS: Trata-se de um estudo exploratório, descritivo, transversal e quantitativo, desenvolvido com 168 universitários, do primeiro ao último ano do curso de medicina. O instrumento utilizado na coleta de dados foi o Questionário sobre o Uso de Drogas, uma adaptação do questionário proposto pela OMS¹. Os dados foram tabulados por meio do programa Statistical Package for the Social Science (SPSS)². RESULTADOS: Ao todo, 54,8% dos universitários são do sexo feminino, 76,8% se encontram na faixa etária de 17 a 22 anos e 50% pertencem à classe social B. Quanto ao uso de substâncias psicoativas, 86,9% relataram uso na vida de álcool, seguido de tabaco (22,0%), solventes (15,5%), anfetaminas (10,1%), cannabis sativa (9,5%), alucinógenos com 1,8% e barbitúricos com 0,6%. CONCLUSÃO: Faz-se necessária a prevenção do uso indevido de substâncias psicoativas entre universitários, por meio de disciplinas curriculares que abordem a temática e de programas de prevenção destinados a essa população.
Resumo:
El riñón es el principal órgano que controla el volumen extracelular y la presión arterial. La rama ascendente gruesa del asa Henle es un segmento del nefrón que reabsorbe 20-30% de la carga de sal filtrada. En particular, la retención inapropiada de sal de este segmento puede provocar o contribuir a diversas formas de hipertensión. Se ha demostrado que el óxido nítrico (NO; por su nomenclatura química sugerida por la IUPAC) en la rama ascendente gruesa de Henle actúa como un autacoide, e inhibe la absorción de sal en este segmento. Por lo tanto, el aumento de la producción de NO puede contribuir significativamente a la excreción sal y de agua. La activación del sistema endógeno de canabinoides por derivados sintéticos y naturales de cannabis sativa, aumentan la excreción urinaria de sodio y agua en humanos y en varios modelos animales. Estos datos indican que los canabinoides desempeñan un rol preponderante en la retención de sal y agua. Uno de los principales mecanismos que intervienen en la excreción y retención de agua y sal es el transporte tubular. Actualmente, no está claro el papel de los canabinoides en el transporte tubular, cómo éstas moléculas afectan la absorción de sal en la rama ascendente gruesa de Henle, o si estos efectos están mediados por los cambios en la producción del NO. La hipótesis de este trabajo es que la activación del sistema de canabinoides a través los receptores CB1, inhiben la absorción de NaCl en la rama ascendente gruesa de Henle mediante el aumento de la producción del NO. La hipótesis de este trabajo será dividida en dos Objetivos específicos: Objetivo específico I. Estudiar la hipótesis que: La activación de los receptores CB1 inhiben la absorción del NaCl en la rama ascendente gruesa de Henle. Se medirá el transporte el la rama ascendente gruesa de Henle en presencia y ausencia de activadores e inhibidores del sistema de canabinoides. También se estudiarán los transportadores involucrados en la inhibición de la absorción de sal producida por los canabinoides en este segmento del nefrón. Objetivo especifico II. Estudiar la hipótesis que: La activación de los receptores CB1 inhibe el transporte en la rama ascendente gruesa de Henle a través de un aumento en la producción del autacoide diurético NO. Se estudiará la producción de NO inducida por canabinoides en la rama ascendente del asa de Henle en tiempo real y en túbulos intactos. Se estudiarán también los mecanismos por los cuales los canabinoides producen una inhibición del transporte en la rama ascendente del asa de Henle, entre ellos la producción del NO. Se abordarán estos objetivos mediante técnicas fisiológicas, biológicas, farmacológicas y bioquímicas. Estos resultados darán una mejor comprensión de los mecanismos implicados en la regulación y el mantenimiento de la absorción de sal en general y, en particular, pueden conducir a la elaboración de una nueva era de diuréticos.
Resumo:
Public concern on mental health has noticeably increased given the high prevalence of neuropsychiatric disorders. Cognition and emotionality are the most affected functions in neuropsychiatric disorders, i.e., anxiety disorders, depression, and schizophrenia. In this review, most relevant literature on the role of the endocannabinoid (eCB) system in neuropsychiatric disorders will be presented. Evidence from clinical and animal studies is provided for the participation of CB1 and CB2 receptors (CB1R and CB2R) in the above mentioned neuropsychiatric disorders. CBRs are crucial in some of the emotional and cognitive impairments reported, although more research is required to understand the specific role of the eCB system in neuropsychiatric disorders. Cannabidiol (CBD), the main non-psychotropic component of the Cannabis sativa plant, has shown therapeutic potential in several neuropsychiatric disorders. Although further studies are needed, recent studies indicate that CBD therapeutic effects may partially depend on facilitation of eCB-mediated neurotransmission. Last but not least, this review includes recent findings on the role of the eCB system in eating disorders. A deregulation of the eCB system has been proposed to be in the bases of several neuropsychiatric disorders, including eating disorders. Cannabis consumption has been related to the appearance of psychotic symptoms and schizophrenia. In contrast, the pharmacological manipulation of this eCB system has been proposed as a potential strategy for the treatment of anxiety disorders, depression, and anorexia nervosa. In conclusion, the eCB system plays a critical role in psychiatry; however, detrimental consequences of manipulating this endogenous system cannot be underestimated over the potential and promising perspectives of its therapeutic manipulation.
Resumo:
The use of cannabis sativa preparations as recreational drugs can be traced back to the earliest civilizations. However, animal models of cannabinoid addiction allowing the exploration of neural correlates of cannabinoid abuse have been developed only recently. We review these models and the role of the CB1 cannabinoid receptor, the main target of natural cannabinoids, and its interaction with opioid and dopamine transmission in reward circuits. Extensive reviews on the molecular basis of cannabinoid action are available elsewhere (Piomelli et al., 2000;Schlicker and Kathmann, 2001).
Resumo:
Objectives In this study, we have investigated the effects of cannabidiol (CBD) on myocardial dysfunction, inflammation, oxidative/nitrative stress, cell death, and interrelated signaling pathways, using a mouse model of type I diabetic cardiomyopathy and primary human cardiomyocytes exposed to high glucose. Background Cannabidiol, the most abundant nonpsychoactive constituent of Cannabis sativa (marijuana) plant, exerts anti-inflammatory effects in various disease models and alleviates pain and spasticity associated with multiple sclerosis in humans. Methods Left ventricular function was measured by the pressure-volume system. Oxidative stress, cell death, and fibrosis markers were evaluated by molecular biology/biochemical techniques, electron spin resonance spectroscopy, and flow cytometry. Results Diabetic cardiomyopathy was characterized by declined diastolic and systolic myocardial performance associated with increased oxidative-nitrative stress, nuclear factor-kappa B and mitogen-activated protein kinase (c-Jun N-terminal kinase, p-38, p38 alpha) activation, enhanced expression of adhesion molecules (intercellular adhesion molecule-1, vascular cell adhesion molecule-1), tumor necrosis factor-alpha, markers of fibrosis (transforming growth factor-beta, connective tissue growth factor, fibronectin, collagen-1, matrix metalloproteinase-2 and -9), enhanced cell death (caspase 3/7 and poly[adenosine diphosphate-ribose] polymerase activity, chromatin fragmentation, and terminal deoxynucleotidyl transferase dUTP nick end labeling), and diminished Akt phosphorylation. Remarkably, CBD attenuated myocardial dysfunction, cardiac fibrosis, oxidative/nitrative stress, inflammation, cell death, and interrelated signaling pathways. Furthermore, CBD also attenuated the high glucose-induced increased reactive oxygen species generation, nuclear factor-kappa B activation, and cell death in primary human cardiomyocytes. Conclusions Collectively, these results coupled with the excellent safety and tolerability profile of CBD in humans, strongly suggest that it may have great therapeutic potential in the treatment of diabetic complications, and perhaps other cardiovascular disorders, by attenuating oxidative/nitrative stress, inflammation, cell death and fibrosis. (J Am Coll Cardiol 2010;56:2115-25) (C) 2010 by the American College of Cardiology Foundation.
Resumo:
Selostus: Pellavan ja kuituhampun korren jakeiden tasapainokosteus
Resumo:
Background and purposeThe phytocannabinoid Delta(9)-tetrahydrocannabivarin (Delta(9)-THCV) has been reported to exhibit a diverse pharmacology; here, we investigate functional effects of Delta(9)-THCV, extracted from Cannabis sativa, using electrophysiological techniques to define its mechanism of action in the CNS.Experimental approachEffects of Delta(9)-THCV and synthetic cannabinoid agents on inhibitory neurotransmission at interneurone-Purkinje cell (IN-PC) synapses were correlated with effects on spontaneous PC output using single-cell and multi-electrode array (MEA) electrophysiological recordings respectively, in mouse cerebellar brain slices in vitro.Key resultsThe cannabinoid receptor agonist WIN 55,212-2 (WIN55) decreased miniature inhibitory postsynaptic current (mIPSC) frequency at IN-PC synapses. WIN55-induced inhibition was reversed by Delta(9)-THCV, and also by the CB(1) receptor antagonist AM251; Delta(9)-THCV or AM251 acted to increase mIPSC frequency beyond basal values. When applied alone, Delta(9)-THCV, AM251 or rimonabant increased mIPSC frequency. Pre-incubation with Delta(9)-THCV blocked WIN55-induced inhibition. In MEA recordings, WIN55 increased PC spike firing rate; Delta(9)-THCV and AM251 acted in the opposite direction to decrease spike firing. The effects of Delta(9)-THCV and WIN55 were attenuated by the GABA(A) receptor antagonist bicuculline methiodide.Conclusions and implicationsWe show for the first time that Delta(9)-THCV acts as a functional CB(1) receptor antagonist in the CNS to modulate inhibitory neurotransmission at IN-PC synapses and spontaneous PC output. Delta(9)-THCV- and AM251-induced increases in mIPSC frequency beyond basal levels were consistent with basal CB(1) receptor activity. WIN55-induced increases in PC spike firing rate were consistent with synaptic disinhibition; whilst Delta(9)-THCV- and AM251-induced decreases in spike firing suggest a mechanism of PC inhibition.British Journal of Pharmacology advance online publication, 3 March 2008; doi:10.1038/bjp.2008.57.
Resumo:
Background: Cannabinoids from cannabis (Cannabis sativa) are anti-inflammatory and have inhibitory effects on the proliferation of a number of tumorigenic cell lines, some of which are mediated via cannabinoid receptors. Cannabinoid (CB) receptors are present in human skin and anandamide, an endogenous CB receptor ligand, inhibits epidermal keratinocyte differentiation. Psoriasis is an inflammatory disease also characterised in part by epidermal keratinocyte hyper-proliferation. Objective: We investigated the plant cannabinoids Delta-9 tetrahydrocannabinol, cannabidiol, cannabinol and cannabigerol for their ability to inhibit the proliferation of a hyper-proliferating human keratinocyte cell line and for any involvement of cannabinoid receptors. Methods: A keratinocyte proliferation assay was used to assess the effect of treatment with cannabinoids. Cell integrity and metabolic competence confirmed using lactate-dehydrogenase and adenosine tri-phosphate assays. To determine the involvement of the receptors, specific agonist and antagonist were used in conjunction with some phytocannabinoids. Western blot and RT-PCR analysis confirmed presence of CB1 and CB2 receptors. Results: The cannabinoids tested all inhibited keratinocyte proliferation in a concentration-dependent manner. The selective CB2 receptor agonists JWH015 and BML190 elicited only partial inhibition, the non-selective CB agonist HU210 produced a concentration-dependent response, the activity of theses agonists were not blocked by either C81 /C82 antagonists. Conclusion: The results indicate that while CB receptors may have a circumstantial role in keratinocyte proliferation, they do not contribute significantly to this process. Our results show that cannabinoids inhibit keratinocyte proliferation, and therefore support a potential role for cannabinoids in the treatment of psoriasis. (c) 2006 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.
Resumo:
Background and purpose: The phytocannabinoid Delta(9)-tetrahydrocannabivarin (Delta(9)-THCV) has been reported to exhibit a diverse pharmacology; here, we investigate functional effects of Delta(9)-THCV, extracted from Cannabis sativa, using electrophysiological techniques to define its mechanism of action in the CNS. Experimental approach: Effects of Delta(9)-THCV and synthetic cannabinoid agents on inhibitory neurotransmission at interneurone-Purkinje cell (IN-PC) synapses were correlated with effects on spontaneous PC output using single-cell and multi-electrode array (MEA) electrophysiological recordings respectively, in mouse cerebellar brain slices in vitro. Key results: The cannabinoid receptor agonist WIN 55,212-2 (WIN55) decreased miniature inhibitory postsynaptic current (mIPSC) frequency at IN-PC synapses. WIN55-induced inhibition was reversed by Delta(9)-THCV, and also by the CB1 receptor antagonist AM251; Delta(9)-THCV or AM251 acted to increase mIPSC frequency beyond basal values. When applied alone, Delta(9)-THCV, AM251 or rimonabant increased mIPSC frequency. Pre-incubation with Delta(9)-THCV blocked WIN55-induced inhibition. In MEA recordings, WIN55 increased PC spike firing rate; Delta(9)-THCV and AM251 acted in the opposite direction to decrease spike firing. The effects of Delta(9)-THCV and WIN55 were attenuated by the GABA(A) receptor antagonist bicuculline methiodide. Conclusions and implications: We show for the first time that Delta(9)-THCV acts as a functional CB1 receptor antagonist in the CNS to modulate inhibitory neurotransmission at IN-PC synapses and spontaneous PC output. Delta(9)-THCV- and AM251-induced increases in mIPSC frequency beyond basal levels were consistent with basal CB1 receptor activity. WIN55-induced increases in PC spike firing rate were consistent with synaptic disinhibition; whilst Delta(9)-THCV-and AM251-induced decreases in spike firing suggest a mechanism of PC inhibition.