943 resultados para CANDIDA


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The diagnosis of invasive candidiasis is difficult because there are no specific clinical manifestations of the disease and colonization and infection are difficult to distinguish. In the last decade, much effort has been made to develop reliable tests for rapid diagnosis of invasive candidiasis, but none of them have found widespread clinical use. Results: Antibodies against a recombinant N-terminal fragment of the Candida albicans germ tube-specific antigen hyphal wall protein 1 (Hwp1) generated in Escherichia coli were detected by both immunoblotting and ELISA tests in a group of 36 hematological or Intensive Care Unit patients with invasive candidiasis and in a group of 45 control patients at high risk for the mycosis who did not have clinical or microbiological data to document invasive candidiasis. Results were compared with an immunofluorescence test to detect antibodies to C. albicans germ tubes (CAGT). The sensitivity, specificity, positive and negative predictive values of a diagnostic test based on the detection of antibodies against the N-terminal fragment of Hwp1 by immunoblotting were 27.8 %, 95.6 %, 83.3 % and 62.3 %, respectively. Detection of antibodies to the N-terminal fragment of Hwp1 by ELISA increased the sensitivity (88.9 %) and the negative predictive value (90.2 %) but slightly decreased the specificity (82.6 %) and positive predictive values (80 %). The kinetics of antibody response to the N-terminal fragment of Hwp1 by ELISA was very similar to that observed by detecting antibodies to CAGT. Conclusion: An ELISA test to detect antibodies against a recombinant N-terminal fragment of the C. albicans germ tube cell wall antigen Hwp1 allows the diagnosis of invasive candidiasis with similar results to those obtained by detecting antibodies to CAGT but without the need of treating the sera to adsorb the antibodies against the cell wall surface of the blastospore.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A semisynthetic binuclear metalloprotein has been prepared by appending the pentaammineruthenium moiety to histidine 39 of the cytochrome c from the yeast Candida krusei. The site of ruthenium binding was identified by peptide mapping. Spectroscopic and electrochemical properties of the derivative indicate the protein conformation is unperturbed by the modification. A preliminary (minimum) rate constant of 170s^(-1) has been determined for the intramolecular electron transfer from ruthenium(II) to iron(III), which occurs over a distance of at least 13Å (barring major conformational changes). Electrochemical studies indicate that this reaction should proceed with a driving force of ~170mV. The rate constant is an order of magnitude faster than that observed in horse heart cytochrome c for intramolecular electron transfer from pentaammineruthenium(II)(histidine 33) to iron(III) (over a similar distance, and with a similar driving force), suggesting a medium or orientation effect makes the Candida intramolecular electron transfer more favorable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Los enzimas son piezas fundamentales en el correcto funcionamiento de cualquier sistema biológico. Gracias a su naturaleza proteica y a las estructuras tridimensionales complejas que son capaces de adoptar, estas moléculas actúan como catalizadores de reacciones químicas. L a función de los enz imas es disminuir la energía de activación de la reacción, aumentando de este modo la velocidad de reacción. L o s enzimas no alteran el balance e nergético de las reacciones en que intervienen, ni modifican, por lo tanto, el equilibrio de la reacción . Por este motivo, en las reacciones catalizadas por enzimas se observa una mayor rapidez a la hora de alcanzar el equilibrio. La ciencia que estudia l a velocidad de las reacciones químicas que son catalizadas por enzimas es la cinética enzimática , e n la cual , las moléculas sobre las que actúan los enzimas se denominan sustratos y las moléculas resultantes de la conversión productos. El estudio de la cin ética de un enzima permite explicar los detalles de su mecanismo catalítico, su papel en el metabolismo o incluso cómo se controla su actividad en la célula. Las dos propiedades más importantes a la hora de trabajar con enzimas son: el tiempo que tarda en saturarse con un sustrato en particular y la velocidad máxima de reacción que puede alcanzar. Para el estudio de estas propiedades en el laboratorio se realizan los ensayos enzimáticos. El procedimiento a seguir en estos casos es medir la aparición de un producto o la desaparición de un sustrato frente al tiempo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este trabajo se centra en la inmovilización de la lipasa B de Candida antarctica en nanopartículas magnéticas y la posterior caracterización cinética de su actividad sintética en medios orgánicos para la pr oducción de biodiesel. La historia del biodiesel comienza en 1893, cuando Rudolph Diesel, el padre del motor diésel, puso en marcha el primer motor de este tipo. Más tarde, en 1900, Diesel ganó el Grand Prix en la Feria Mundial de París con su m otor impulsado por un biodiesel de aceite de cacahuete. En 1903, además, comenzó la producción del Modelo T de Henry Ford, diseñado para utilizar etanol como combustible. Diesel creía que la utilización de biodiesel era el futuro de la automoción: “ el uso de aceites vegetales como combustibles para motor puede parecer insignificante hoy en día, pero estos aceites puede n convertirse, con el transcurso del tiempo, en combustibles tan importantes como el petróleo y el carbón lo son hoy en día ” Sin embargo, a p artir de 1920, los fueles basados en petróleo comenzaron a ganar terreno, debido a su mayor eficiencia, menor precio y mejor disponibilidad. De esta forma, el mercado de los biofueles quedó relegado hasta que las distintas crisis del petróleo (1973, 1979, 19 90) unidas a la creciente preocupación por la polución y la c onservación del medio ambiente, además de al aumento de la población y por tanto de la demanda de combustibles , llevaron a devolve r la mirada a estos fueles . Fue en esta época cuando comenzó, p rincipalmente en EEUU y Brasil, la producción a gran escala de biocombustibles de primera generación, basados en la utilización de excedentes agrícolas como el maíz y la caña de azúcar para la producción de bioetanol y aceites de maíz y grasas animales par a la producción de biodiesel .

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Enzyme-catalyzed production of biodiesel is the object of extensive research due to the global shortage of fossil fuels and increased environmental concerns. Herein we report the preparation and main characteristics of a novel biocatalyst consisting of Cross-Linked Enzyme Aggregates (CLEAs) of Candida antarctica lipase B (CALB) which are covalently bound to magnetic nanoparticles, and tackle its use for the synthesis of biodiesel from non-edible vegetable and waste frying oils. For this purpose, insolubilized CALB was covalently cross-linked to magnetic nanoparticles of magnetite which the surface was functionalized with –NH2 groups. The resulting biocatalyst combines the relevant catalytic properties of CLEAs (as great stability and feasibility for their reutilization) and the magnetic character, and thus the final product (mCLEAs) are superparamagnetic particles of a robust catalyst which is more stable than the free enzyme, easily recoverable from the reaction medium and reusable for new catalytic cycles. We have studied the main properties of this biocatalyst and we have assessed its utility to catalyze transesterification reactions to obtain biodiesel from non-edible vegetable oils including unrefined soybean, jatropha and cameline, as well as waste frying oil. Using 1% mCLEAs (w/w of oil) conversions near 80% were routinely obtained at 30°C after 24 h of reaction, this value rising to 92% after 72 h. Moreover, the magnetic biocatalyst can be easily recovered from the reaction mixture and reused for at least ten consecutive cycles of 24 h without apparent loss of activity. The obtained results suggest that mCLEAs prepared from CALB can become a powerful biocatalyst for application at industrial scale with better performance than those currently available.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Neuromielite Óptica (NMO), anteriormente considerada como um subtipo de Esclerose Múltipla, é uma doença autoimune, inflamatória do sistema nervoso central, na qual o sistema imune ataca a mielina dos neurônios localizados nos nervos ópticos e medula espinhal, produzindo, então, mielite e neurite óptica simultânea ou sequenciais. A patogênese da neuromielite óptica é influenciada pela combinação de fatores genéticos e ambientais, incluindo agentes infecciosos. Diferentes doenças infecciosas podem tanto desencadear como exacerbar a autoimunidade. Portanto, o objetivo do presente estudo foi de analisar a responsividade imune in vitro a Escherichia coli, Staphylococcus aureus e Candida albicans em pacientes com NMO recorrente-remitente, e a correlacionar ao nível de incapacidade neurológica. Nesse contexto, a extensão da linfoproliferação e perfil de citocinas em resposta a S. aureus e C. albicans, em culturas de células mononucleares do sangue periférico (CMSP) foram similares entre pacientes com NMO e indivíduos saudáveis. Entretanto, maior proliferação de células T associada à elevada liberação de IL-1β, IL-6 e IL-17 foi observada em culturas de células derivadas de pacientes com NMO quando estimuladas com E. coli. Ademais, nessas culturas, a produção de IL-10 foi significativamente menor quando comparada ao grupo controle. Ensaios conduzidos em culturas de CMSP depletadas de diferentes subtipos de linfócitos demonstraram que, enquanto células T CD4+ e T CD8+ produzem IL-6 em resposta a E. coli, a produção de IL-17 foi praticamente restrita às células T CD4+. Os níveis de IL-6 e IL-17 in vitro induzidos por E. coli foram correlacionados positivamente às incapacidades neurológicas. Essa maior tendência a produzir citocinas relacionadas ao perfil Th17 foi diretamente associada aos níveis de IL-23 produzidos por monócitos ativados com LPS. De modo interessante, níveis elevados de LPS foram quantificados no plasma de pacientes com NMO e estes foram correlacionados aos níveis plasmáticos de IL-6. Em conclusão, nossos resultados sugerem que uma maior responsividade a E. coli poderia estar envolvida na patogênese da NMO. Esse tipo de investigação é muito importante pois inibidores da ligação ou sinalização do TLR poderiam ser considerados terapias com grande potencial como adjuvantes no tratamento de pacientes com NMO.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective The protein Hwp1, expressed on the pathogenic phase of Candida albicans, presents sequence analogy with the gluten protein gliadin and is also a substrate for transglutaminase. This had led to the suggestion that C. albicans infection (CI) may be a triggering factor for Celiac disease (CeD) onset. We investigated cross-immune reactivity between CeD and CI. Methods Serum IgG levels against recombinant Hwp1 and serological markers of CeD were measured in 87 CeD patients, 41 CI patients, and 98 healthy controls (HC). IgA and IgG were also measured in 20 individuals from each of these groups using microchips sensitized with 38 peptides designed from the N-terminal of Hwp1. Results CI and CeD patients had higher levels of anti-Hwp1 (p= 0.0005 and p= 0.004) and anti-gliadin (p= 0.002 and p= 0.0009) antibodies than HC but there was no significant difference between CeD and CI patients. CeD and CI patients had higher levels of anti-transglutaminase IgA than HC (p= 0.0001 and p= 0.0039). During CI, the increase in anti-Hwp1 paralleled the increase in anti-gliadin antibodies. Microchip analysis showed that CeD patients were more reactive against some Hwp1 peptides than CI patients, and that some deamidated peptides were more reactive than their native analogs. Binding of IgG from CeD patients to Hwp1 peptides was inhibited by gamma III gliadin peptides. Conclusions Humoral cross-reactivity between Hwp1 and gliadin was observed during CeD and CI. Increased reactivity to Hwp1 deamidated peptide suggests that transglutaminase is involved in this interplay. These results support the hypothesis that CI may trigger CeD onset in genetically-susceptible individuals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Os orifícios de acesso aos parafusos de retenção devem ser preenchidos para que o parafuso não seja danificado caso seja necessária a remoção da prótese. Dentre os materiais mais utilizados estão o algodão, a fita de politetrafluoretileno e a guta percha. O objetivo deste estudo é avaliar a formação de biofilme de Candida albicans nos materiais anteriormente descritos, buscando estabelecer um parâmetro que contribua para a escolha do tipo de material mais adequado a ser utilizado clinicamente. Foram utilizados UCLAs, análogos e parafusos sextavados, todos de titânio. Os conjuntos foram montados com torque de 32N. Os materiais foram condensados no interior dos UCLAs e colocados em meio de cultura com uma suspensão de 3x106 células/ml de Candida albicans. O sistema foi armazenado à 37C com agitação, por 15 dias e o meio foi renovado a cada 48 horas. A quantificação de biofilme foi realizada pelo ensaio de MTT e leitura à 490nm, resultando em diferentes valores de densidade óptica. A normalidade (p=0,304 - Kolmogorov-Smirnov) e a igualdade de variâncias (p=0,721 - Scheffe) foram testadas primeiramente. O teste de análise de variância demonstrou diferença significativa entre os grupos (p<0,001) e com o Holm-Sidak foi observada diferença significativa entre os grupos algodão e guta (p<0,05) e algodão e fita de politetrafluoetileno (p<0,05); não houve diferença significativa entre os grupos guta e fita de politatrafluoretileno (p>0,05), apesar dos valores da fita de politetrafluoetileno terem sido maiores. Considerando-se as limitações deste estudo in vitro, podemos concluir que tanto a guta-percha quanto a fita de politetrafluoretileno apresentaram menor formação de biofilme, não havendo diferença estatisticamente significativa entre os materiais. O algodão apresentou um nível de formação de biofilme significativamente maior que a fita de politetrafluoretileno e a guta percha. Diante disso, serão necessários novos estudos para confirmar as limitações que este tipo de material pode apresentar quando usado como material de preenchimento do acesso do parafuso da prótese sobre implante.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Micafungin is an effective antifungal agent useful for the therapy of invasive candidiasis. Candida albicans is the most common cause of invasive candidiasis; however, infections due to non-C. albicans species, such as Candida parapsilosis, are rising. Killing and postantifungal effects (PAFE) are important factors in both dose interval choice and infection outcome. The aim of this study was to determinate the micafungin PAFE against 7 C. albicans strains, 5 Candida dubliniensis, 2 Candida Africana, 3 C. parapsilosis, 2 Candida metapsilosis and 2 Candida orthopsilosis. For PAFE studies, cells were exposed to micafungin for 1 h at concentrations ranging from 0.12 to 8 mu g/ml. Time-kill experiments (TK) were conducted at the same concentrations. Samples were removed at each time point (0-48 h) and viable counts determined. Micafungin (2 mu g/ml) was fungicidal (>= 3 log(10) reduction) in TK against 5 out of 14 (36%) strains of C. albicans complex. In PAFE experiments, fungicidal endpoint was achieved against 2 out of 14 strains (14%). In TK against C. parapsilosis, 8 mu g/ml of micafungin turned out to be fungicidal against 4 out 7 (57%) strains. Conversely, fungicidal endpoint was not achieved in PAFE studies. PAFE results for C. albicans complex (41.83 +/- 2.18 h) differed from C. parapsilosis complex (8.07 +/- 4.2 h) at the highest tested concentration of micafungin. In conclusion, micafungin showed significant differences in PAFE against C. albicans and C. parapsilosis complexes, being PAFE for the C. albicans complex longer than for the C. parapsilosis complex.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The characteristic of biodiesel fuel production from transesterification of soybean oil is studied. The reactant solution is the mixture of soybean oil, methanol, and solvent. A new lipase immobilization method, textile cloth immobilization, was developed in this study. Immobilized Candida lipase sp. 99-125 was applied as the enzyme catalyst. The effect of flow rate of reaction liquid, solvents, reaction time, and water content on the biodiesel yield is investigated. Products analysis shows that the main components in biodiesel are methyl sterate, methyl hexadecanoate, methyl oleate, methyl linoleate, and methyl linolenate. The test results indicate that the maximum yield of biodiesel of 92% was obtained at the conditions of hexane being the solvent, water content being 20 wt%, and reaction time being 24 h.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The isoleucine and valine biosynthetic enzyme acetolactate synthase (Ilv2p) is an attractive antifungal drug target, since the isoleucine and valine biosynthetic pathway is not present in mammals, Saccharomyces cerevisiae ilv2Delta mutants do not survive in vivo, Cryptococcus neoformans ilv2 mutants are avirulent, and both S. cerevisiae and Cr. neoformans ilv2 mutants die upon isoleucine and valine starvation. To further explore the potential of Ilv2p as an antifungal drug target, we disrupted Candida albicans ILV2, and demonstrated that Ca. albicans ilv2Delta mutants were significantly attenuated in virulence, and were also profoundly starvation-cidal, with a greater than 100-fold reduction in viability after only 4 h of isoleucine and valine starvation. As fungicidal starvation would be advantageous for drug design, we explored the basis of the starvation-cidal phenotype in both S. cerevisiae and Ca. albicans ilv2Delta mutants. Since the mutation of ILV1, required for the first step of isoleucine biosynthesis, did not suppress the ilv2Delta starvation-cidal defects in either species, the cidal phenotype was not due to alpha-ketobutyrate accumulation. We found that starvation for isoleucine alone was more deleterious in Ca. albicans than in S. cerevisiae, and starvation for valine was more deleterious than for isoleucine in both species. Interestingly, while the target of rapamycin (TOR) pathway inhibitor rapamycin further reduced S. cerevisiae ilv2Delta starvation viability, it increased Ca. albicans ilv1Delta and ilv2Delta viability. Furthermore, the recovery from starvation was dependent on the carbon source present during recovery for S. cerevisiae ilv2Delta mutants, reminiscent of isoleucine and valine starvation inducing a viable but non-culturable-like state in this species, while Ca. albicans ilv1Delta and ilv2 Delta viability was influenced by the carbon source present during starvation, supporting a role for glucose wasting in the Ca. albicans cidal phenotype.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fungal pathogens exploit diverse mechanisms to survive exposure to antifungal drugs. This poses concern given the limited number of clinically useful antifungals and the growing population of immunocompromised individuals vulnerable to life-threatening fungal infection. To identify molecules that abrogate resistance to the most widely deployed class of antifungals, the azoles, we conducted a screen of 1,280 pharmacologically active compounds. Three out of seven hits that abolished azole resistance of a resistant mutant of the model yeast Saccharomyces cerevisiae and a clinical isolate of the leading human fungal pathogen Candida albicans were inhibitors of protein kinase C (PKC), which regulates cell wall integrity during growth, morphogenesis, and response to cell wall stress. Pharmacological or genetic impairment of Pkc1 conferred hypersensitivity to multiple drugs that target synthesis of the key cell membrane sterol ergosterol, including azoles, allylamines, and morpholines. Pkc1 enabled survival of cell membrane stress at least in part via the mitogen activated protein kinase (MAPK) cascade in both species, though through distinct downstream effectors. Strikingly, inhibition of Pkc1 phenocopied inhibition of the molecular chaperone Hsp90 or its client protein calcineurin. PKC signaling was required for calcineurin activation in response to drug exposure in S. cerevisiae. In contrast, Pkc1 and calcineurin independently regulate drug resistance via a common target in C. albicans. We identified an additional level of regulatory control in the C. albicans circuitry linking PKC signaling, Hsp90, and calcineurin as genetic reduction of Hsp90 led to depletion of the terminal MAPK, Mkc1. Deletion of C. albicans PKC1 rendered fungistatic ergosterol biosynthesis inhibitors fungicidal and attenuated virulence in a murine model of systemic candidiasis. This work establishes a new role for PKC signaling in drug resistance, novel circuitry through which Hsp90 regulates drug resistance, and that targeting stress response signaling provides a promising strategy for treating life-threatening fungal infections.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kinesins are molecular motors that transport intracellular cargos along microtubules (MTs) and influence the organization and dynamics of the MT cytoskeleton. Their force-generating functions arise from conformational changes in their motor domain as ATP is bound and hydrolyzed, and products are released. In the budding yeast Saccharomyces cerevisiae, the Kar3 kinesin forms heterodimers with one of two non-catalytic kinesin-like proteins, Cik1 and Vik1, which lack the ability to bind ATP, and yet they retain the capacity to bind MTs. Cik1 and Vik1 also influence and respond to the MT-binding and nucleotide states of Kar3, and differentially regulate the functions of Kar3 during yeast mating and mitosis. The mechanism by which Kar3/Cik1 and Kar3/Vik1 dimers operate remains unknown, but has important implications for understanding mechanical coordination between subunits of motor complexes that traverse cytoskeletal tracks. In this study, we show that the opportunistic human fungal pathogen Candida albicans (Ca) harbors a single version of this unique form of heterodimeric kinesin and we present the first in vitro characterization of this motor. Like its budding yeast counterpart, the Vik1-like subunit binds directly to MTs and strengthens the MT-binding affinity of the heterodimer. However, in contrast to ScKar3/Cik1 and ScKar3/Vik1, CaKar3/Vik1 exhibits weaker overall MT-binding affinity and lower ATPase activity. Preliminary investigations using a multiple motor motility assay indicate CaKar3/Vik1 may not be motile. Using a maltose binding protein tagging system, we determined the X-ray crystal structure of the CaKar3 motor domain and observed notable differences in its nucleotide-binding pocket relative to ScKar3 that appear to represent a previously unobserved state of the active site. Together, these studies broaden our knowledge of novel kinesin motor assemblies and shed new light on structurally dynamic regions of Kar3/Vik1-like motor complexes that help mediate mechanical coordination of its subunits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The reported incidence of colonization of oropharyngeal medical devices with Candida spp. has increased in recent years, although few studies that have systematically examined the adherence of yeast cells to such biomaterials, the primary step in the process of colonization. This study, therefore, examined the effects of oropharyngeal atmospheric conditions (5% v/v carbon dioxide) and the presence of a salivary conditioning film on both the surface properties and adherence of Candida albicans, Candida krusei and Candida tropicalis to PVC and silicone. Furthermore, the effects of the salivary conditioning film on the surface properties of these biomaterials are reported. Growth of the three Candida spp. in an atmosphere containing 5% v/v CO2 significantly increased their cell surface hydrophobicity and reduced the zeta potential of C. albicans and C. krusei yet increased the zeta potential of C. tropicalis (p < 0.05). Furthermore, growth in 5% v/v CO2 decreased the adherence of C. tropicalis and C. albicans to both PVC and silicone, however, increased adherence of C. krusei (p < 0.05). Pre-treatment of the microorganisms with pooled human saliva significantly decreased their cell surface hydrophobicity and increased their adherence to either biomaterial in comparison to yeast cells that had been pre-treated with PBS (p < 0.05). Saliva treatment of the microorganisms had no consistent effect on microbial zeta potential. Interestingly, adherence of the three, saliva-treated Candida spp. to saliva-treated silicone and PVC was significantly lower than whenever the microorganisms and biomaterials had been treated with PBS (p < 0.05). Treatment of silicone and PVC with saliva significantly altered the surface properties, notably reducing both the advancing and receding contact angles and, additionally, the microrugosity. These effects may contribute to the decreased adherence of saliva-treated microorganisms to these biomaterials. In conclusion, this study has demonstrated the effects of physiological conditions within the oral cavity on the adherence of selected Candida spp. to biomaterials employed as oropharyngeal medical devices. In particular, this study has ominously shown that these materials act as substrates for yeast colonization, highlighting the need for advancements in biomaterial design. Furthermore, it is important that physiological conditions should be employed whenever biocompatibility of oropharyngeal biomaterials is under investigation. © 2001 Kluwer Academic Publishers.