995 resultados para C4 conserved region
Resumo:
The sandfly Lutzomyia longipalpis s.l. is the main vector of American Visceral Leishmaniasis. L. longipalpis s.l. is a species complex but until recently the existence of cryptic sibling species among Brazilian populations was a controversial issue. A fragment of paralytic (para), a voltage dependent sodium channel gene associated with insecticide resistance and courtship song production in Drosophila, was isolated and used as a molecular marker to study the divergence between two sympatric siblings of the L. longipalpis complex from Sobral, Brazil. The results revealed para as the first single locus DNA marker presenting fixed differences between the two species in this locality. In addition, two low frequency amino-acid changes in an otherwise very conserved region of the channel were observed, raising the possibility that it might be associated with incipient resistance in this vector. To the best of our knowledge, the present study represents the first population genetics analysis of insecticide resistance genes in this important leishmaniasis vector.
Resumo:
BACKGROUND: Plasmodium vivax circumsporozoite (PvCS) protein is a major sporozoite surface antigen involved in parasite invasion of hepatocytes and is currently being considered as vaccine candidate. PvCS contains a dimorphic central repetitive fragment flanked by conserved regions that contain functional domains. METHODS: We have developed a chimeric 137-mer synthetic polypeptide (PvCS-NRC) that includes the conserved region I and region II-plus and the two natural repeat variants known as VK210 and VK247. The antigenicity of PvCS-NRC was tested using human sera from PNG and Colombia endemic areas and its immunogenicity was confirmed in mice with different genetic backgrounds, the polypeptide formulated either in Alum or GLA-SE adjuvants was assessed in inbred C3H, CB6F1 and outbred ICR mice, whereas a formulation in Montanide ISA51 was tested in C3H mice. RESULTS: Antigenicity studies indicated that the chimeric peptide is recognized by a high proportion (60-70%) of residents of malaria-endemic areas. Peptides formulated with either GLA-SE or Montanide ISA51 adjuvants induced stronger antibody responses as compared with the Alum formulation. Sera from immunized mice as well as antigen-specific affinity purified human IgG antibodies reacted with sporozoite preparations in immunofluorescence and Western blot assays, and displayed strong in vitro inhibition of sporozoite invasion (ISI) into hepatoma cells. CONCLUSIONS: The polypeptide was recognized at high prevalence when tested against naturally induced human antibodies and was able to induce significant immunogenicity in mice. Additionally, specific antibodies were able to recognize sporozoites and were able to block sporozoite invasion in vitro. Further evaluation of this chimeric protein construct in preclinical phase e.g. in Aotus monkeys in order to assess the humoral and cellular immune responses as well as protective efficacy against parasite challenge of the vaccine candidate must be conducted.
Resumo:
Résumé : Un nombre croissant de cas de malaria chez les voyageurs et migrants a été rapporté. Bien que l'analyse microscopique des frottis sanguins reste traditionnellement l'outil diagnostic de référence, sa fiabilité dépend considérablement de l'expertise de l'examinateur, pouvant elle-même faire défaut sous nos latitudes. Une PCR multiplex en temps réel a donc été développée en vue d'une standardisation du diagnostic. Un ensemble d'amorces génériques ciblant une région hautement conservée du gène d'ARN ribosomial 18S du genre Plasmodium a tout d'abord été conçu, dont le polymorphisme du produit d'amplification semblait suffisant pour créer quatre sondes spécifiques à l'espèce P. falciparum, P. malariae, P. vivax et P. ovale. Ces sondes utilisées en PCR en temps réel se sont révélées capables de détecter une seule copie de plasmide de P. falciparum, P. malariae, P. vivax et P. ovale spécifiquement. La même sensibilité a été obtenue avec une sonde de screening pouvant détecter les quatre espèces. Quatre-vingt-dix-sept échantillons de sang ont ensuite été testés, dont on a comparé la microscopie et la PCR en temps réel pour 66 (60 patients) d'entre eux. Ces deux méthodes ont montré une concordance globale de 86% pour la détection de plasmodia. Les résultats discordants ont été réévalués grâce à des données cliniques, une deuxième expertise microscopique et moléculaire (laboratoire de Genève et de l'Institut Suisse Tropical de Bâle), ainsi qu'à l'aide du séquençage. Cette nouvelle analyse s'est prononcé en faveur de la méthode moléculaire pour tous les neuf résultats discordants. Sur les 31 résultats positifs par les deux méthodes, la même réévaluation a pu donner raison 8 fois sur 9 à la PCR en temps réel sur le plan de l'identification de l'espèce plasmodiale. Les 31 autres échantillons ont été analysés pour le suivi de sept patients sous traitement antimalarique. Il a été observé une baisse rapide du nombre de parasites mesurée par la PCR en temps réel chez six des sept patients, baisse correspondant à la parasitémie déterminée microscopiquement. Ceci suggère ainsi le rôle potentiel de la PCR en temps réel dans le suivi thérapeutique des patients traités par antipaludéens. Abstract : There have been reports of increasing numbers of cases of malaria among migrants and travelers. Although microscopic examination of blood smears remains the "gold standard" in diagnosis, this method suffers from insufficient sensitivity and requires considerable expertise. To improve diagnosis, a multiplex real-time PCR was developed. One set of generic primers targeting a highly conserved region of the 18S rRNA gene of the genus Plasmodium was designed; the primer set was polymorphic enough internally to design four species-specific probes for P. falciparum, P. vivax, P. malarie, and P. ovale. Real-time PCR with species-specific probes detected one plasmid copy of P. falciparum, P. vivax, P. malariae, and P. ovale specifically. The same sensitivity was achieved for all species with real-time PCR with the 18S screening probe. Ninety-seven blood samples were investigated. For 66 of them (60 patients), microscopy and real-time PCR results were compared and had a crude agreement of 86% for the detection of plasmodia. Discordant results were reevaluated with clinical, molecular, and sequencing data to resolve them. All nine discordances between 18S screening PCR and microscopy were resolved in favor of the molecular method, as were eight of nine discordances at the species level for the species-specific PCR among the 31 samples positive by both methods. The other 31 blood samples were tested to monitor the antimalaria treatment in seven patients. The number of parasites measured by real-time PCR fell rapidly for six out of seven patients in parallel to parasitemia determined microscopically. This suggests a role of quantitative PCR for the monitoring of patients receiving antimalaria therapy.
Resumo:
Retinitis pigmentosa (RP) is a retinal degenerative disease characterized by the progressive loss of photoreceptors. We have previously demonstrated that RP can be caused by recessive mutations in the human FAM161A gene, encoding a protein with unknown function that contains a conserved region shared only with a distant paralog, FAM161B. In this study, we show that FAM161A localizes at the base of the photoreceptor connecting cilium in human, mouse and rat. Furthermore, it is also present at the ciliary basal body in ciliated mammalian cells, both in native conditions and upon the expression of recombinant tagged proteins. Yeast two-hybrid analysis of binary interactions between FAM161A and an array of ciliary and ciliopathy-associated proteins reveals direct interaction with lebercilin, CEP290, OFD1 and SDCCAG8, all involved in hereditary retinal degeneration. These interactions are mediated by the C-terminal moiety of FAM161A, as demonstrated by pull-down experiments in cultured cell lines and in bovine retinal extracts. As other ciliary proteins, FAM161A can also interact with the microtubules and organize itself into microtubule-dependent intracellular networks. Moreover, small interfering RNA-mediated depletion of FAM161A transcripts in cultured cells causes the reduction in assembled primary cilia. Taken together, these data indicate that FAM161A-associated RP can be considered as a novel retinal ciliopathy and that its molecular pathogenesis may be related to other ciliopathies.
Resumo:
Plasmodium sporozoites make a remarkable journey from the mosquito midgut to the mammalian liver. The sporozoite's major surface protein, circumsporozoite protein (CSP), is a multifunctional protein required for sporozoite development and likely mediates several steps of this journey. In this study, we show that CSP has two conformational states, an adhesive conformation in which the C-terminal cell-adhesive domain is exposed and a nonadhesive conformation in which the N terminus masks this domain. We demonstrate that the cell-adhesive domain functions in sporozoite development and hepatocyte invasion. Between these two events, the sporozoite must travel from the mosquito midgut to the mammalian liver, and N-terminal masking of the cell-adhesive domain maintains the sporozoite in a migratory state. In the mammalian host, proteolytic cleavage of CSP regulates the switch to an adhesive conformation, and the highly conserved region I plays a critical role in this process. If the CSP domain architecture is altered such that the cell-adhesive domain is constitutively exposed, the majority of sporozoites do not reach their target organs, and in the mammalian host, they initiate a blood stage infection directly from the inoculation site. These data provide structure-function information relevant to malaria vaccine development.
Resumo:
Background: Familial Hemiplegic Migraine (FHM), characterized by a prolonged unilateral hemiparesis, mainly results from mutations in the alpha-1a subunit of the calcium channel gene CACNA1A that can also cause two other dominantly inherited neurological disorders, Episodic Ataxia type 2 (EA2, with sometimes migrainous headaches) and Spinocerebellar Ataxia type 6 (SCA6, late-onset and progressive). A same mutation can have different clinical expression in a family (hemiplegic migraine, migraine-coma, cerebellar ataxia). CACNA1A mutations in FHM are usually missense, leading to gain-of-function, while truncating mutations leading to loss-of-function are usually associated with EA2. Case report: This 9-year-old girl was seen as a baby for hypotonia and transient vertical nystagmus. Her first brain MRI was normal. She evolved as a congenital ataxia, but since the age of two, she had attacks of coma, hemiparesis (either side), partial seizures, dystonic movements and fever. Attacks were initially triggered by minor head bumps, subsequently spontaneous. Brain MRIs in the acute stage always showed transient unilateral hemisphere swelling. Follow-up images revealed atrophic lesions in the temporo-occipital regions and cerebellar atrophy. A prophylactic trial with flunarizine was ineffective. Acetazolamide was recently introduced. Methods: Since our patient shared features of both FHM and EA2, we studied the CACNA1A gene by direct sequencing in the patient's and parents' DNA. Results: We identified an unreported de novo heterozygous deletion of three base pairs (c.4503_4505delCTT) predicting the deletion of one amino acid (p.Phe1502del). The CACNA1A protein contains 4 domains, each formed by six transmembrane segments. The deletion is located in a highly conserved region in segment 6 (S6) of the third domain. Mutations in S6 segments of calcium channels change single-channel conductance and channel selectivity, most resulting in loss-of-function. Outlook: In vitro expression studies of the identified mutation are underway, aiming at understanding its functional consequences and finding an efficient treatment.
Resumo:
Bovine coronavirus (BCoV) is a member of the group 2 of the Coronavirus (Nidovirales: Coronaviridae) and the causative agent of enteritis in both calves and adult bovine, as well as respiratory disease in calves. The present study aimed to develop a semi-nested RT-PCR for the detection of BCoV based on representative up-to-date sequences of the nucleocapsid gene, a conserved region of coronavirus genome. Three primers were designed, the first round with a 463bp and the second (semi-nested) with a 306bp predicted fragment. The analytical sensitivity was determined by 10-fold serial dilutions of the BCoV Kakegawa strain (HA titre: 256) in DEPC treated ultra-pure water, in fetal bovine serum (FBS) and in a BCoV-free fecal suspension, when positive results were found up to the 10-2, 10-3 and 10-7 dilutions, respectively, which suggests that the total amount of RNA in the sample influence the precipitation of pellets by the method of extraction used. When fecal samples was used, a large quantity of total RNA serves as carrier of BCoV RNA, demonstrating a high analytical sensitivity and lack of possible substances inhibiting the PCR. The final semi-nested RT-PCR protocol was applied to 25 fecal samples from adult cows, previously tested by a nested RT-PCR RdRp used as a reference test, resulting in 20 and 17 positives for the first and second tests, respectively, and a substantial agreement was found by kappa statistics (0.694). The high sensitivity and specificity of the new proposed method and the fact that primers were designed based on current BCoV sequences give basis to a more accurate diagnosis of BCoV-caused diseases, as well as to further insights on protocols for the detection of other Coronavirus representatives of both Animal and Public Health importance.
Resumo:
We determined the frequency of large rearrangements and point mutations in 130 Brazilian patients with 21-hydroxylase deficiency and correlated genotype with phenotype. The frequency of CYP21 deletions was lower (4.4%) than in most of the previous series described, whereas the frequency of large gene conversions was similar to the frequency reported in the literature (6.6%). The most frequent point mutations were I2 splice (41.8% in salt wasting - SW), I172N (32.6% in simple virilizing - SV) and V281L (40.2% in the late onset form - LO). The frequency of the nine most common point mutations was similar to that reported for other countries. The 93 fully genotyped patients were classified into 3 mutation groups based on the degree of enzymatic activity (A<2%, B @ 2%, C>20%). In group A, 62% of cases presented the SW form; in group B, 96% the SV form, and in group C, 88% the LO form. We diagnosed 80% of the affected alleles after screening for large rearrangements and 15 point mutations. To diagnose these remaining alleles we sequenced the CYP21 gene of one patient with the SV form and identified a heterozygous G->A transition in codon 424. This mutation leads to a substitution of glycine by serine in a conserved region and was also found in a compound heterozygous state in 4 other patients. The mutation G424S presented a linkage disequilibrium with CYP21P and C4A gene deletions and HLA DR17, suggesting a probable founder effect. Search for the G424S mutation in other populations will reveal if it is restricted to the Brazilian patients or if it has a wider ethnic distribution.
Resumo:
L'adaptation à l'environnement est essentielle à la survie cellulaire et des organismes en général. La capacité d'adaptation aux variations en oxygène repose sur des mécanismes de détection de l'hypoxie et une capacité à répondre en amorçant un programme d'angiogenèse. Bien que la contribution du facteur induit par l'hypoxie (HIF) est bien définie dans l'induction d'une telle réponse, d'autres mécanismes sont susceptibles d'être impliqués. Dans cette optique, les études démontrant l'influence du métabolisme énergétique sur le développement vasculaire sont de plus en plus nombreuses. L'un de ces composés, le succinate, a récemment été démontré comme étant le ligand du GPR91, un récepteur couplé aux protéines G. Parmi les différents rôles attribués à ce récepteur, notre laboratoire s'intéressa aux rôles du GPR91 dans la revascularisation observée suite à des situations d'hypoxie dont ceux affectant la rétine. Il existe cependant d'autres conditions pour lesquelles une revascularisation serait bénéfique notamment suite à un stress hypoxique-ischémique cérébral. Nos travaux ont pour objectifs de mieux comprendre le rôle et le fonctionnement de ce récepteur durant le développement et dans le cadre de pathologies affectant la formation de vaisseaux sanguins. Dans un premier temps, nous avons déterminé le rôle du GPR91 dans la guérison suite à un stress hypoxique-ischémique cérébral chez le nouveau-né. Nous montrons que ce récepteur est exprimé dans le cerveau et en utilisant des souris n'exprimant pas le GPR91, nous démontrons que dans un modèle d'hypoxie-ischémie cérébrale néonatal l'angiogenèse prenant place au cours de la phase de guérison dépend largement du récepteur. L'injection intracérébrale de succinate induit également l'expression de nombreux facteurs proangiogéniques et les résultats suggèrent que le GPR91 contrôle la production de ces facteurs. De plus, l'injection de ce métabolite avant le modèle d'hypoxie-ischémie réduit substantiellement la taille de l'infarctus. In vitro, des essaies de transcription génique démontrent qu'à la fois les neurones et les astrocytes répondent au succinate en induisant l'expression de facteurs bénéfiques à la revascularisation. En considérant le rôle physiologique important du GPR91, une seconde étude a été entreprise afin de comprendre les déterminants moléculaires régissant son activité. Bien que la localisation subcellulaire des RCPG ait traditionnellement été considérée comme étant la membrane plasmique, un nombre de publications indique la présence de ces récepteurs à l'intérieur de la cellule. En effet, tel qu'observé par microscopie confocale, le récepteur colocalise avec plusieurs marqueurs du réticulum endoplasmique, que celui-ci soit exprimé de façon endogène ou transfecté transitoirement. De plus, l’activation des gènes par stimulation avec le succinate est fortement affectée en présence d'inhibiteur du transport d'acides organiques. Nous montrons que le profil de facteurs angiogéniques est influencé selon la localisation ce qui affecte directement l'organisation du réseau tubulaire ex vivo. Finalement, nous avons identifié une région conservée du GPR91 qui agit de signal de rétention. De plus, nous avons découvert l'effet de l'hypoxie sur la localisation. Ces travaux confirment le rôle de régulateur maître de l'angiogenèse du GPR91 lors d'accumulation de succinate en condition hypoxique et démontrent pour la première fois l'existence, et l'importance, d'un récepteur intracellulaire activé par un intermédiaire du métabolisme. Ces données pavent donc la voie à une nouvelle avenue de traitement ciblant GPR91 dans des pathologies hypoxiques ischémiques cérébrales et soulèvent l'importance de tenir compte de la localisation subcellulaire de la cible dans le processus de découverte du médicament.
Resumo:
Mariner transposable elements are widespread and diverse in insects. We screened 10 species of fig wasps (Hymenoptera: Agaonidae) for mariner elements. All 10 species harbour a large diversity of mariner elements, most of which have interrupted reading frames in the transposase gene region, suggesting that they are inactive and ancient. We sequenced two full-length mariner elements and found evidence to suggest that they are inserted in the genome at a conserved region shared by other hymenopteran taxa. The association between mariner elements and fig wasps is old and dominated by vertical transmission, suggesting that these 'selfish genetic elements' have evolved to impart only very low costs to their hosts.
Resumo:
A LightCycler(R) real-time PCR hybridization probe-based assay that detects a conserved region of the 16S rRNA gene of pathogenic but not saprophytic Leptospira species was developed for the rapid detection of pathogenic leptospires directly from processed tissue samples. In addition, a differential PCR specific for saprophytic leptospires and a control PCR targeting the porcine beta-actin gene were developed. To assess the suitability of these PCR methods for diagnosis, a trial was performed on kidneys taken from adult pigs with evidence of leptospiral infection, primarily a history of reproductive disease and serological evidence of exposure to pathogenic leptospires (n = 180) and aborted pig foetuses (n = 24). Leptospire DNA was detected by the 'pathogenic' specific PCR in 25 tissues (14%) and the control beta-actin PCR was positive in all 204 samples confirming DNA was extracted from all samples. No leptospires were isolated from these samples by culture and no positives were detected with the 'saprophytic' PCR. In a subsidiary experiment, the 'pathogenic' PCR was used to analyse kidney samples from rodents (n = 7) collected as part of vermin control in a zoo, with show animals with high microagglutination titres to Leptospira species, and five were positive. Fifteen PCR amplicons from 1 mouse, 2 rat and 14 pig kidney samples, were selected at random from positive PCRs (n = 30) and sequenced. Sequence data indicated L. interrogans DNA in the pig and rat samples and L. inadai DNA, which is considered of intermediate pathogenicity, in the mouse sample. The only successful culture was from this mouse kidney and the isolate was confirmed to be L. inadai by classical serology. These data suggest this suite of PCRs is suitable for testing for the presence of pathogenic leptospires in pig herds where abortions and infertility occur and potentially in other animals such as rodents. Crown Copyright (C) 2007 Published by Elsevier Ltd. All rights reserved.
Resumo:
The genetics of the stipule spot pigmentation (SSP) in faba bean (Vicia faba L.) was studied using four inbred lines, of which Disco/2 was zero-tannin (zt2) with colourless stipule spots, ILB938/2 was normal-tannin (ZT2) with colourless stipule spots, and both Aurora/2 and Mélodie/2 were ZT2 with coloured stipule spots. Crosses Mélodie/2 × ILB 938/2, Mélodie/2 × Disco/2, ILB 938/2 × Aurora/2 and ILB 938/2 × Disco/2 (A, B, C and D, respectively) were prepared, along with reciprocals and backcrosses, and advanced through single-seed descent. All F1 hybrid plants had pigmented stipule spots, and in the F2 generation, the segregation ratio fit 3 coloured:1 colourless in crosses A, B and C and 9:7 in cross D. In the F3 generation, the ratio fit 5:3 in crosses A and C and 25:39 in cross D, and in the F4 generation, 9:7 in cross A. SSP was linked to the zero-tannin characteristics (white flower) only in cross B. The results show that coloured stipule spot is dominant to colourless and that colouration is determined by two unlinked complementary recessive genes. We propose the symbols ssp2 for the gene associated with zt2 in Disco/2 and ssp1 for the gene not associated with tannin content in ILB938/2. The novel ssp1 locus was mapped at F5 in cross ‘A’ using Medicago truncatula-derived single-nucleotide polymorphism and was on chromosome 1 of faba bean, in a well-conserved region of M. truncatula chromosome 5 containing some candidate Myb and basic helix–loop–helix transcription factor genes.
Resumo:
We analysed Hordeum spontaneum accessions from 21 different locations to understand the genetic diversity of HsDhn3 alleles and effects of single base mutations on the intrinsically disordered structure of the resulting polypeptide (HsDHN3). HsDHN3 was found to be YSK2-type with a low-frequency 6-aa deletion in the beginning of Exon 1. There is relatively high diversity in the intron region of HsDhn3 compared to the two exon regions. We have found subtle differences in K segments led to changes in amino acids chemical properties. Predictions for protein interaction profiles suggest the presence of a protein-binding site in HsDHN3 that coincides with the K1 segment. Comparison of DHN3 to closely related cereals showed that all of them contain a nuclear localization signal sequence flanking to the K1 segment and a novel conserved region located between the S and K1 segments [E(D/T)DGMGGR]. We found that H. vulgare, H. spontaneum, and Triticum urartu DHN3s have a greater number of phosphorylation sites for protein kinase C than other cereal species, which may be related to stress adaptation. Our results show that the nature and extent of mutations in the conserved segments of K1 and K2 are likely to be key factors in protection of cells.
Resumo:
Aims: To evaluate the sensitivity and specificity of polyclonal and monoclonal antibodies (Mabs) against intimin in the detection of enteropathogenic and enterohaemorrhagic Escherichia coli isolates using immunoblotting. Methods and Results: Polyclonal and Mabs against the intimin-conserved region were raised, and their reactivities were compared in enteropathogenic E. coli (EPEC) and enterohaemorrhagic E. coli (EHEC) isolates using immunoblotting analysis. In comparison with rat antiserum, rabbit anti-intimin IgG-enriched fraction had a stronger recognition pattern to a wide spectrum of intimin types in different EPEC and EHEC serotypes. On the other hand, murine monoclonal IgG2b specific to intimin, with dissociation constant of 1 center dot 3 x 10-8 mol l-1, failed in the detection of some of these isolates. Conclusion: All employed antibodies showed 100% specificity, not reacting with any of the eae-negative isolates. The sensitivity range was according to the employed antisera, and 97% for rabbit anti-intimin IgG-enriched fraction, followed by 92% and 78% sensitivity with rat antisera and Mab. Significance and Impact of the Study: The rabbit anti-intimin IgG-enriched fraction in immunoblotting analysis is a useful tool for EPEC and EHEC diagnoses.
Resumo:
Bothropasin is a 48 kDa hemorrhagic PIII snake venom metalloprotease (SVMP) isolated from Bothrops jararaca, containing disintegrin/cysteine-rich adhesive domains. Here we present the crystal structure of bothropasin complexed with the inhibitor POL647. The catalytic domain consists of a scaffold of two subdomains organized similarly to those described for other SVMPs, including the zinc and calcium-binding sites. The free cysteine residue Cys(189) is located within a hydrophobic core and it is not available for disulfide bonding or other interactions. There is no identifiable secondary structure for the disintegrin domain, but instead it is composed mostly of loops stabilized by seven disulfide bonds and by two calcium ions. The ECD region is in a loop and is structurally related to the RGD region of RGD disintegrins, which are derived from I`ll SVMPs. The ECD motif is stabilized by the Cys(117)_Cys(310) disulfide bond (between the disintegrin and cysteine-rich domains) and by one calcium ion. The side chain of Glu(276) of the ECD motif is exposed to solvent and free to make interactions. In bothropasin, the HVR (hyper-variable region) described for other Pill SVMPs in the cysteine-rich domain, presents a well-conserved sequence with respect to several other Pill members from different species. We propose that this subset be referred to as PIII-HCR (highly conserved region) SVMPs. The differences in the disintegrin-like, cysteine-rich or disintegrin-like cysteine-rich domains may be involved in selecting target binding, which in turn could generate substrate diversity or specificity for the catalytic domain. (C) 2008 Elsevier Ltd. All rights reserved.