541 resultados para C1–Finsler Manifold
Resumo:
We examine, from both the experimental and theoretical point of view, the behavior of the maximum splitting ΔE, of the 7F1 manifold of the Eu3+ ion as a function of the so-called crystal field strength parameter, Nv, in a series of oxides. In connection with the original theory that describes the relation between ΔE and Nv, a more consistent procedure to describe this relation is presented for the cases of small total angular momentum J. Good agreement is found between theory and experiment. © 1995.
Resumo:
The purpose of this note is the construction of a geometrical structure for a supersymmetric N = 2, d = 5 Yang-Mills theory on the group manifold. From a general hypothesis proposed for the curvatures of the theory, the Bianchi identities are solved, whose solution will be fundamental for the construction of the geometrical action for the N = 2, d = 5 supergravity and Yang-Mills coupled theory.
Resumo:
Wir berechnen die Eulerzahl der 10-dimensionalen exzeptionellen irreduziblen symplektischen Mannigfaltigkeit, die von O Grady konstruiert wurde. Die Idee besteht darin, zunächst eine Lagrangefaserung zu konstruieren und dann die Eulerzahlen der Fasern zu berechnen. Es stellt sich heraus, dass fast alle Fasern die Eulerzahl 0 haben, und deswegen reduziert sich das Problem auf die Berechnung der Eulerzahlen der übrigen Fasern. Diese Fasern sind Modulräume von halbstabilen Garben auf singulären Kurven. Der Hauptteil dieser Dissertation ist der Berechnung der Eulerzahlen dieser Modulräume gewidmet. Diese Resultate sind von unabhängigem Interesse.
Resumo:
Mode of access: Internet.
Resumo:
Checklist Amer. imprints
Resumo:
Typescript.
Resumo:
Mode of access: Internet.
Resumo:
* The research has been partially supported by Bulgarian Funding Organizations, sponsoring the Algebra Section of the Mathematics Institute, Bulgarian Academy of Sciences, a Contract between the Humboldt Univestit¨at and the University of Sofia, and Grant MM 412 / 94 from the Bulgarian Board of Education and Technology
Resumo:
Ива Р. Докузова, Димитър Р. Разпопов - В настоящата статия е разгледан клас V оттримерни риманови многообразия M с метрика g и два афинорни тензора q и S. Дефинирана е и друга метрика ¯g в M. Локалните координати на всички тези тензори са циркулантни матрици. Намерени са: 1) зависимост между тензора на кривина R породен от g и тензора на кривина ¯R породен от ¯g; 2) тъждество за тензора на кривина R в случая, когато тензорът на кривина ¯R се анулира; 3) зависимост между секционната кривина на прозволна двумерна q-площадка {x, qx} и скаларната кривина на M.
Resumo:
In this paper, we investigate the use of manifold learning techniques to enhance the separation properties of standard graph kernels. The idea stems from the observation that when we perform multidimensional scaling on the distance matrices extracted from the kernels, the resulting data tends to be clustered along a curve that wraps around the embedding space, a behavior that suggests that long range distances are not estimated accurately, resulting in an increased curvature of the embedding space. Hence, we propose to use a number of manifold learning techniques to compute a low-dimensional embedding of the graphs in an attempt to unfold the embedding manifold, and increase the class separation. We perform an extensive experimental evaluation on a number of standard graph datasets using the shortest-path (Borgwardt and Kriegel, 2005), graphlet (Shervashidze et al., 2009), random walk (Kashima et al., 2003) and Weisfeiler-Lehman (Shervashidze et al., 2011) kernels. We observe the most significant improvement in the case of the graphlet kernel, which fits with the observation that neglecting the locational information of the substructures leads to a stronger curvature of the embedding manifold. On the other hand, the Weisfeiler-Lehman kernel partially mitigates the locality problem by using the node labels information, and thus does not clearly benefit from the manifold learning. Interestingly, our experiments also show that the unfolding of the space seems to reduce the performance gap between the examined kernels.
Resumo:
The quantum Jensen-Shannon divergence kernel [1] was recently introduced in the context of unattributed graphs where it was shown to outperform several commonly used alternatives. In this paper, we study the separability properties of this kernel and we propose a way to compute a low-dimensional kernel embedding where the separation of the different classes is enhanced. The idea stems from the observation that the multidimensional scaling embeddings on this kernel show a strong horseshoe shape distribution, a pattern which is known to arise when long range distances are not estimated accurately. Here we propose to use Isomap to embed the graphs using only local distance information onto a new vectorial space with a higher class separability. The experimental evaluation shows the effectiveness of the proposed approach. © 2013 Springer-Verlag.