998 resultados para C. reinhardtii SE


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In vascular plants, mutations leading to a defect in debranching enzyme lead to the simultaneous synthesis of glycogen-like material and normal starch. In Chlamydomonas reinhardtii comparable defects lead to the replacement of starch by phytoglycogen. Therefore, debranching was proposed to define a mandatory step for starch biosynthesis. We now report the characterization of small amounts of an insoluble, amylose-like material found in the mutant algae. This novel, starch-like material was shown to be entirely dependent on the presence of granule-bound starch synthase (GBSSI), the enzyme responsible for amylose synthesis in plants. However, enzyme activity assays, solubilization of proteins from the granule, and western blots all failed to detect GBSSI within the insoluble polysaccharide matrix. The glycogen-like polysaccharides produced in the absence of GBSSI were proved to be qualitatively and quantitatively identical to those produced in its presence. Therefore, we propose that GBSSI requires the presence of crystalline amylopectin for granule binding and that the synthesis of amylose-like material can proceed at low levels without the binding of GBSSI to the polysaccharide matrix. Our results confirm that amylopectin synthesis is completely blocked in debranching-enzyme-defective mutants of C. reinhardtii.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The D2 polypeptide of the photosystem II (PSII) complex in the green alga Chlamydomonas reinhardtii is thought to be reversibly phosphorylated. By analogy to higher plants, the phosphorylation site is likely to be at residue threonine-2 (Thr-2). We have investigated the role of D2 phosphorylation by constructing two mutants in which residue Thr-2 has been replaced by either alanine or serine. Both mutants grew photoautotrophically at wild-type rates, and noninvasive biophysical measurements, including the decay of chlorophyll fluorescence, the peak temperature of thermoluminescence bands, and rates of oxygen evolution, indicate little perturbation to electron transfer through the PSII complex. The susceptibility of mutant PSII to photoinactivation as measured by the light-induced loss of PSII activity in whole cells in the presence of the protein-synthesis inhibitors chloramphenicol or lincomycin was similar to that of wild type. These results indicate that phosphorylation at Thr-2 is not required for PSII function or for protection from photoinactivation. In control experiments the phosphorylation of D2 in wild-type C. reinhardtii was examined by 32P labeling in vivo and in vitro. No evidence for the phosphorylation of D2 in the wild type could be obtained. [14C]Acetate-labeling experiments in the presence of an inhibitor of cytoplasmic protein synthesis also failed to identify phosphorylated (D2.1) and nonphosphorylated (D2.2) forms of D2 upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Our results suggest that the existence of D2 phosphorylation in C. reinhardtii is still in question.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Most chloroplast genes in vascular plants are organized into polycistronic transcription units, which generate a complex pattern of mono-, di-, and polycistronic transcripts. In contrast, most Chlamydomonas reinhardtii chloroplast transcripts characterized to date have been monocistronic. This paper describes the atpA gene cluster in the C. reinhardtii chloroplast genome, which includes the atpA, psbI, cemA, and atpH genes, encoding the α-subunit of the coupling-factor-1 (CF1) ATP synthase, a small photosystem II polypeptide, a chloroplast envelope membrane protein, and subunit III of the CF0 ATP synthase, respectively. We show that promoters precede the atpA, psbI, and atpH genes, but not the cemA gene, and that cemA mRNA is present only as part of di-, tri-, or tetracistronic transcripts. Deletions introduced into the gene cluster reveal, first, that CF1-α can be translated from di- or polycistronic transcripts, and, second, that substantial reductions in mRNA quantity have minimal effects on protein synthesis rates. We suggest that posttranscriptional mRNA processing is common in C. reinhardtii chloroplasts, permitting the expression of multiple genes from a single promoter.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The light-saturated rate of photosynthetic O2 evolution in Chlamydomonas reinhardtii declined by approximately 75% on a per-cell basis after 4 d of P starvation or 1 d of S starvation. Quantitation of the partial reactions of photosynthetic electron transport demonstrated that the light-saturated rate of photosystem (PS) I activity was unaffected by P or S limitation, whereas light-saturated PSII activity was reduced by more than 50%. This decline in PSII activity correlated with a decline in both the maximal quantum efficiency of PSII and the accumulation of the secondary quinone electron acceptor of PSII nonreducing centers (PSII centers capable of performing a charge separation but unable to reduce the plastoquinone pool). In addition to a decline in the light-saturated rate of O2 evolution, there was reduced efficiency of excitation energy transfer to the reaction centers of PSII (because of dissipation of absorbed light energy as heat and because of a transition to state 2). These findings establish a common suite of alterations in photosynthetic electron transport that results in decreased linear electron flow when C. reinhardtii is limited for either P or S. It was interesting that the decline in the maximum quantum efficiency of PSII and the accumulation of the secondary quinone electron acceptor of PSII nonreducing centers were regulated specifically during S-limited growth by the SacI gene product, which was previously shown to be critical for the acclimation of C. reinhardtii to S limitation (J.P. Davies, F.H. Yildiz, and A.R. Grossman [1996] EMBO J 15: 2150–2159).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An NADPH-dependent NO2−-reducing system was reconstituted in vitro using ferredoxin (Fd) NADP+ oxidoreductase (FNR), Fd, and nitrite reductase (NiR) from the green alga Chlamydomonas reinhardtii. NO2− reduction was dependent on all protein components and was operated under either aerobic or anaerobic conditions. NO2− reduction by this in vitro pathway was inhibited up to 63% by 1 mm NADP+. NADP+ did not affect either methyl viologen-NiR or Fd-NiR activity, indicating that inhibition was mediated through FNR. When NADPH was replaced with a glucose-6-phosphate dehydrogenase (G6PDH)-dependent NADPH-generating system, rates of NO2− reduction reached approximately 10 times that of the NADPH-dependent system. G6PDH could be replaced by either 6-phosphogluconate dehydrogenase or isocitrate dehydrogenase, indicating that G6PDH functioned to: (a) regenerate NADPH to support NO2− reduction and (b) consume NADP+, releasing FNR from NADP+ inhibition. These results demonstrate the ability of FNR to facilitate the transfer of reducing power from NADPH to Fd in the direction opposite to that which occurs in photosynthesis. The rate of G6PDH-dependent NO2− reduction observed in vitro is capable of accounting for the observed rates of dark NO3− assimilation by C. reinhardtii.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The pyrenoid is a proteinaceous structure found in the chloroplast of most unicellular algae. Various studies indicate that ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is present in the pyrenoid, although the fraction of Rubisco localized there remains controversial. Estimates of the amount of Rubisco in the pyrenoid of Chlamydomonas reinhardtii range from 5% to nearly 100%. Using immunolocalization, the amount of Rubisco localized to the pyrenoid or to the chloroplast stroma was estimated for C. reinhardtii cells grown under different conditions. It was observed that the amount of Rubisco in the pyrenoid varied with growth condition; about 40% was in the pyrenoid when the cells were grown under elevated CO2 and about 90% with ambient CO2. In addition, it is likely that pyrenoidal Rubisco is active in CO2 fixation because in vitro activity measurements showed that most of the Rubisco must be active to account for CO2-fixation rates observed in whole cells. These results are consistent with the idea that the pyrenoid is the site of CO2 fixation in C. reinhardtii and other unicellular algae containing CO2-concentrating mechanisms.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have begun to take a genetic approach to study chloroplast protein import in Chlamydomonas reinhardtii by creating deletions in the transit peptide of the γ-subunit of chloroplast ATPase-coupling factor 1 (CF1-γ, encoded by AtpC) and testing their effects in vivo by transforming the altered genes into an atpC mutant, and in vitro by importing mutant precursors into isolated C. reinhardtii chloroplasts. Deletions that removed 20 or 23 amino acid residues from the center of the transit peptide reduced in vitro import to an undetectable level but did not affect CF1-γ accumulation in vivo. The CF1-γ transit peptide does have an in vivo stroma-targeting function, since chimeric genes in which the stroma-targeting domain of the plastocyanin transit peptide was replaced by the AtpC transit peptide-coding region allowed plastocyanin to accumulate in vivo. To determine whether the transit peptide deletions were impaired in in vivo stroma targeting, mutant and wild-type AtpC transit peptide-coding regions were fused to the bacterial ble gene, which confers bleomycin resistance. Although 25% of the wild-type fusion protein was associated with chloroplasts, proteins with transit peptide deletions remained almost entirely cytosolic. These results suggest that even severely impaired in vivo chloroplast protein import probably does not limit the accumulation of CF1-γ.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have identified a class of proteins that bind single-stranded telomeric DNA and are required for the nuclear organization of telomeres and/or telomere-associated proteins. Rlf6p was identified by its sequence similarity to Gbp1p, a single-stranded telomeric DNA-binding protein from Chlamydomonas reinhardtii. Rlf6p and Gbp1p bind yeast single-stranded G-strand telomeric DNA. Both proteins include at least two RNA recognition motifs, which are found in many proteins that interact with single-stranded nucleic acids. Disruption of RLF6 alters the distribution of repressor/activator protein 1 (Rap1p), a telomere-associated protein. In wild-type yeast cells, Rap1p localizes to a small number of perinuclear spots, while in rlf6 cells Rap1p appears diffuse and nuclear. Interestingly, telomere position effect and telomere length control, which require RAP1, are unaffected by rlf6 mutations, demonstrating that Rap1p localization can be uncoupled from other Rap1p-dependent telomere functions. In addition, expression of Chlamydomonas GBP1 restores perinuclear, punctate Rap1p localization in rlf6 mutant cells. The functional complementation of a fungal gene by an algal gene suggests that Rlf6p and Gbp1p are members of a conserved class of single-stranded telomeric DNA-binding proteins that influence nuclear organization. Furthermore, it demonstrates that, despite their unusual codon bias, C. reinhardtii genes can be efficiently translated in Saccharomyces cerevisiae cells.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recovery of an essentially complete upper Maestrichtian/lower Paleocene interval on Maud Rise at 65 °S latitude in the Weddell Sea during Ocean Drilling Program Leg 113 marks the first time that this interval has been cored at these high latitudes. The entire interval was missing at all Falkland Plateau sites drilled during DSDP Legs 36 and 71. Maestrichtian nannofossil assemblages in sediments from Sites 689 and 690, therefore, provide the basis for a needed revision of Maestrichtian coccolith zonation schemes for high southern latitudes. Three zones and two new subzones are described: the uppermost Maestrichtian Nephrolithus frequens Zone, which is subdivided into the Cribrosphaerella daniae Subzone and the underlying N. corystus Subzone, and the Biscutum magnum and B. coronum Zones. A complete calcareous nannofossil biostratigraphy based on the proposed scheme is given including a description of individual species abundance, preservation, and stratigraphic distribution. At this site, the southernmost carbonate site yet drilled by DSDP/ODP, it is evident that the Falkland Plateau Nannofossil Biogeographic Province can be extended to the margins of Antarctica. In addition, the biogeographic ranges of many calcareous nannofossils can likewise be extended. Last, we hypothesize that Nephrolithus frequens evolved from N. corystus prior to its dispersal to the lower latitudes where it is an important zonal marker. Three new taxa, Neocrepidolithus watkinsii n. sp., Nephrolithus frequens miniporus emend, n. comb, and Psyktosphaera firthii n. gen., n. sp. are described.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The thermo-chemical conversion of green microalgae Chlamydomonas reinhardtii wild type (CCAP 11/32C), its cell wall deficient mutant C. reinhardtii CW15 (CCAP 11/32CW15) and Chlorella vulgaris (CCAP 211/11B) as well as their proteins and lipids was studied under conditions of intermediate pyrolysis. The microalgae were characterised for ultimate and gross chemical composition, lipid composition and extracted products were analysed by Thermogravimetric analysis (TG/DTG) and Pyrolysis-gaschromatography/mass-spectrometry (Py-GC/MS). Proteins accounted for almost 50% and lipids 16-22 % of dry weight of cells with little difference in the lipid compositions between the C. reinhardtii wild type and the cell wall mutant. During TGA analysis, each biomass exhibited three stages of decomposition, namely dehydration, devolatilization and decomposition of carbonaceous solids. Py-GC/MS analysis revealed significant protein derived compounds from all algae including toluene, phenol, 4-methylphenol, 1H-indole, 1H-indole-3methyl. Lipid pyrolysis products derived from C. reinhardtii wild type and C. reinhardtii CW15 were almost identical and reflected the close similarity of the fatty acid profiles of both strains. Major products identified were phytol and phytol derivatives formed from the terpenoid chain of chlorophyll, benzoic acid alkyl ester derivative, benzenedicarboxylic acid alkyl ester derivative and squalene. In addition, octadecanoic acid octyl ester, hexadecanoic acid methyl ester and hydrocarbons including heptadecane, 1-nonadecene and heneicosane were detected from C. vulgaris pyrolysed lipids. These results contrast sharply with the types of pyrolytic products obtained from terrestrial lignocellulosic feedstocks and reveal that intermediate pyrolysis of algal biomass generates a range of useful products with wide ranging applications including bio fuels.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ca2+-dependent signalling processes enable plants to perceive and respond to diverse environmental stressors, such as osmotic stress. A clear understanding of the role of spatiotemporal Ca2+ signalling in green algal lineages is necessary in order to understand how the Ca2+ signalling machinery has evolved in land plants. We used single-cell imaging of Ca2+-responsive fluorescent dyes in the unicellular green alga Chlamydomonas reinhardtii to examine the specificity of spatial and temporal dynamics of Ca2+ elevations in the cytosol and flagella in response to salinity and osmotic stress. We found that salt stress induced a single Ca2+ elevation that was modulated by the strength of the stimulus and originated in the apex of the cell, spreading as a fast Ca2+ wave. By contrast, hypo-osmotic stress induced a series of repetitive Ca2+ elevations in the cytosol that were spatially uniform. Hypo-osmotic stimuli also induced Ca2+ elevations in the flagella that occurred independently from those in the cytosol. Our results indicate that the requirement for Ca2+ signalling in response to osmotic stress is conserved between land plants and green algae, but the distinct spatial and temporal dynamics of osmotic Ca2+ elevations in C. reinhardtii suggest important mechanistic differences between the two lineages.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ca2+-dependent signalling processes enable plants to perceive and respond to diverse environmental stressors, such as osmotic stress. A clear understanding of the role of spatiotemporal Ca2+ signalling in green algal lineages is necessary in order to understand how the Ca2+ signalling machinery has evolved in land plants. We used single-cell imaging of Ca2+-responsive fluorescent dyes in the unicellular green alga Chlamydomonas reinhardtii to examine the specificity of spatial and temporal dynamics of Ca2+ elevations in the cytosol and flagella in response to salinity and osmotic stress. We found that salt stress induced a single Ca2+ elevation that was modulated by the strength of the stimulus and originated in the apex of the cell, spreading as a fast Ca2+ wave. By contrast, hypo-osmotic stress induced a series of repetitive Ca2+ elevations in the cytosol that were spatially uniform. Hypo-osmotic stimuli also induced Ca2+ elevations in the flagella that occurred independently from those in the cytosol. Our results indicate that the requirement for Ca2+ signalling in response to osmotic stress is conserved between land plants and green algae, but the distinct spatial and temporal dynamics of osmotic Ca2+ elevations in C. reinhardtii suggest important mechanistic differences between the two lineages.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wild-type Chlamydomonas reinhardtii cells shifted from high concentrations (5%) of CO2 to low, ambient levels (0.03%) rapidly increase transcription of mRNAs from several CO2-responsive genes. Simultaneously, they develop a functional carbon concentrating mechanism that allows the cells to greatly increase internal levels of CO2 and HCO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{3}^{-}}}\end{equation*}\end{document}. The cia5 mutant is defective in all of these phenotypes. A newly isolated gene, designated Cia5, restores transformed cia5 cells to the phenotype of wild-type cells. The 6,481-bp gene produces a 5.1-kb mRNA that is present constitutively in light in high and low CO2 both in wild-type cells and the cia5 mutant. It encodes a protein that has features of a putative transcription factor and that, likewise, is present constitutively in low and high CO2 conditions. Complementation of cia5 can be achieved with a truncated Cia5 gene that is missing the coding information for 54 C-terminal amino acids. Unlike wild-type cells or cia5 mutants transformed with an intact Cia5 gene, cia5 mutants complemented with the truncated gene exhibit constitutive synthesis of mRNAs from CO2-responsive genes in light under both high and low CO2 conditions. These discoveries suggest that posttranslational changes to the C-terminal domain control the ability of CIA5 to act as an inducer and directly or indirectly control transcription of CO2-responsive genes. Thus, CIA5 appears to be a master regulator of the carbon concentrating mechanism and is intimately involved in the signal transduction mechanism that senses and allows immediate responses to fluctuations in environmental CO2 and HCO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}{\mathrm{_{3}^{-}}}\end{equation*}\end{document} concentrations.